

ELABORAÇÃO DE FAROFAS MISTAS FUNCIONAIS: Determinação do teor de fibras <u>Isabelle C. A. S. SIMONI</u>¹; André F. BARCELOS²; Laisa do D. FLAUZINO³; Brígida M. VILAS BOAS⁴; Aline M. NACHTIGALL⁵

RESUMO

A farofa temperada, é uma preparação que faz parte da dieta dos brasileiros, e possibilita a incorporação de diversos ingredientes, visando melhorar suas propriedades funcionais. Portanto, objetivou-se elaborar farofas mistas temperadas à base de farinhas de mandioca (FM), de batata doce (FBD) e de proteína texturizada de soja (FPTS) e determinar se ocorreu comprometimento do teor de fibras das mesmas. Para tanto, foram elaboradas nove formulações de farofas, seguindo o delineamento centroide simplex (3 misturas puras, 3 misturas binárias e 1 ternária (repetida 2x)). As farofas foram processadas em uma agroindústria de Pouso Alegre e a determinação do teor de fibras total ocorreu no IFSULDEMINAS Campus Machado. A FM apresentou efeito aditivo e a FPTS de supressão sobre o teor de fibra bruta das farofas. As farofas foram classificadas como fonte de fibras (≥ 3g/100g), com exceção das formulações FPTS e FPTS:FBD. A FM pura originou uma farofa com alto teor de fibras (≥ 6g/100g). Foi possível elaborar farofas com teores significativos de fibra a partir das farinhas de batata doce e de proteína texturizada de soja e agregar outros nutrientes funcionais a mesma.

Palavras-chave:

Delineamento de mistura; fibra bruta; produto farináceo.

1. INTRODUÇÃO

A farofa, ou farinha temperada, tem sido desenvolvida para elevar o consumo de farinhas pelos brasileiros, uma vez que apresenta baixo custo e pode ser elaborada com qualquer tipo de farinha. Este tipo de produto é comumente produzido com as farinhas de mandioca e de milho, que constituem fonte de carboidratos e fibras, sendo que as últimas são essenciais para a sensação de saciedade, diminuição da absorção de açúcares e gorduras, redução do risco de doenças cardíacas, de diabetes tipo II e de câncer de intestino. A farofa possibilita a diversificação dos pratos e agregação de valor nutricional pela simples mistura de ingredientes em sua formulação.

De acordo com a revisão de Jemziyal e Mahendran (2017), a batata doce é um ingrediente funcional, que contém excelente fonte de vitamina A (na forma de beta-caroteno), vitamina C e manganês. Além disso, é uma boa fonte de fibra alimentar, açúcares naturais, proteínas, vitaminas do

¹Bolsista Fomento Interno, IFSULDEMINAS – *Campus* Machado. E-mail: isaahsimoni1@gmail.com.

² Mestrando PPGCTA, IFSULDEMINAS – Campus Machado. E-mail: andrefbarcellos@hotmail.com.

³ Discente do curso de Ciência e Tecnologia de Alimentos, IFSULDEMINAS – *Campus* Machado. E-mail: laisadivino7@gmail.com

⁴ Co-orientadora, IFSULDEMINAS – Campus Machado. E-mail: brigida.monteiro@ifsuldeminas.com.br.

⁵ Orientadora, IFSULDEMINAS - Campus Machado. E-mail: aline.manke@ifsuldeminas.com.br.

complexo B (B3, B5, B6, B7), potássio, ferro, cálcio e cobre. Por outro lado, a proteína texturizada de soja pode ser aplicada e adaptada a uma infinidade de produtos alimentícios, com a finalidade de substituir ou complementar outras proteínas de maior custo, melhorar as características sensoriais do produto final, além de aumentar o valor nutricional e reduzir custo de produção dos alimentos (BROCA; DEVIDÉ; SEIBEL, 2014).

Diante do exposto, objetivou-se desenvolver farofas mistas a partir de farinha de mandioca (FM), farinha de batata doce (FBD) e farinha de proteína texturizada de soja (FPTS), utilizando e delineamento de misturas e determinar o teor de fibra total das formulações.

2. MATERIAL E MÉTODOS

As farinhas de mandioca, de batata-doce e de proteína texturizada de soja foram cedidas por uma agroindústria situada em Pouso Alegre-MG, onde ocorreu o processamento das farofas temperadas, seguindo as boas práticas de fabricação.

A partir das farinhas de mandioca (FM), de batata doce (FBD) e de proteína texturizada de soja (FPTS) foram elaboradas nove formulações de farofas temperadas, seguindo o delineamneto simplex centróide, sendo que os ensaios corresponderam as componentes puras (F₁ – FM; F₂ – FBD; F₃ – FPTS), misturas binárias (F₄ – 1/2 FM e 1/2 FBD; F₅ – 1/2 FM e 1/2 FPTS; F₆ – 1/2 FBD e 1/2 FPTS) e o ponto central (F₇ – 1/3 FM, 1/3 FBD, 1/3 FPTS). Os ensasios 8 (F₈) e 9 (F₉) correspondem a repetição do ponto central (F₇), pemitindo o cálculo do erro experimental e teste da falta de ajuste.

As farofas tiveram como formulação base: 3 Kg de farinha base, 80 g de mix de tempero (sal, cebola desidratada, alho desidratado, pimenta calabresa e pimenta do reino), 90 g de óleo vegetal e 10 g de urucum. Para a elaboração das farofas, os ingredientes foram homogeneizados, em misturador mecânico, na seguinte ordem: primeiro as farinhas (nas proporções do delineamento), seguido do mix de tempero e, por último, do óleo vegetal com o urucum, até obtenção de uma farofa homogênea. As farofas foram acondicionadas em embalagens plásticas de polipropileno de 250 g, seladas, identificadas e armazenadas, em local com ausência de luz e calor, até o momento da análise.

O teor de fibra total das farofas temperadas foi avaliado no Laboratório de Bromatologia do Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas (IFSULDEMINAS) - campus Machado, com 5 repetições, segundo metodologias descritas nas Normas Analíticas do Instituto Adolfo Lutz (2008).

As variáveis de mistura e a variável dependente foram ajustadas a equação do modelo e examinadas quanto à qualidade do ajuste, utilizando as estatísticas dadas pelo coeficiente de determinação R², falta de ajuste e significância do modelo (p< 0,05), com o auxílio do programa Statistic 10.0.

4. RESULTADOS E DISCUSSÕES

A variação do teor de fibra total, não pôde ser explicada pelos modelos linear, quadrático e cúbico especial, uma vez que para todos os modelos testados foram não significativos, ao passo que, a falta de ajuste foi significativa. Portanto, na Tabela 1 são apresentados os teores médios de fibra bruta por formulação sem apresentação dos coeficientes de regressão.

Tabela 1. Delineamento de mistura simplex centróide e valores médios e desvio padrão do teor de fibra total, em g.100g, das farofas temperadas

Ensaios	Formulações	Variáveis independentes			Variável resposta
		X_{l}	X_2	X_3	Teor de fibra total $(g/100g) \pm dp$
1	F ₁	1	0	0	$8,06 \pm 0,09$
2	F_2	0	1	0	$4,08 \pm 0,51$
3	F ₃	0	0	1	$2,\!82 \pm 0,\!28$
4	F_4	1/2	1/2	0	$3,04 \pm 0,22$
5	F_5	0	1/2	1/2	$3,\!44 \pm 0,\!04$
6	F_6	1/2	0	1/2	$2,67 \pm 0,15$
7	F_7	1/3	1/3	1/3	$3,07 \pm 0,06$
8	F_8	1/3	1/3	1/3	$3,96 \pm 0,08$
9	F ₉	1/3	1/3	1/3	$3,\!48 \pm 0,\!09$

 X_1 – farinha de mandioca; X_2 – farinha de batata doce; X_3 – farinha de proteína texturizada de soja.

Como pode ser observado na Tabela 1, o teor de fibra das farofas temperadas aumentou com o acréscimo de farinha de mandioca e, teve uma relação inversamente proporcional ao aumento da farinha de proteína texturizada de soja. Este fato pode ser justificado pelas características distintas das matérias-primas, uma vez que a farinha de mandioca apresenta elevado teor de fibras e a farinha de proteína texturizada de soja, como o próprio nome descreve, tem elevado teor proteico.

A farofa com 100% de farinha de mandioca (F1) pode ser classificados como contendo alto teor de fibras (≥ 6 g.100g⁻¹), sendo as demais considerados fontes de fibras (≥ 3 g.100g⁻¹), de acordo com a RDC N° 54, de 12 de novembro de 2012 (BRASIL, 2012), com exceção da formulação contendo apenas a farinha de proteína texturizada de soja (F3) e a com farinha de proteína de soja associada a farinha de batata doce (F6).

Sardinha et al. (2014) ao avaliar fontes dietéticas de ingestão de fibras no Brasil, cita que a farinha de mandioca contém 5,5% de fibras, já a Tabela de Composição de Alimentos - TACO apresenta o valor de 6,5% (UNICAMP, 2011), ambos valores inferiores ao encontrado ao elaborar a farofa temperada com farinha de mandioca apenas (F1 – 8,06%).

Jemziyal e Mahendran (2017) ao trabalharem com farinha de batata doce encontram valores superiores de fibras (9,4%). No entanto, Olatunde et al. (2016) ao estudarem farinhas de batata doce

obtidas de diferentes variedades do tubérculo, com distintos pré-tratamentos e processos de secagem, observaram valores de fibras variando de 0,08% a 5,54%, sendo que o último se aproxima mais ao da farofa elaborada com 100% desta farinha (F2 – 4,08%). A grande variação demonstra o quanto a variedade do tubérculo e as condições de processamento influenciam o parâmetro estudado.

5. CONCLUSÕES

Com a mistura das farinhas foi possível elaborar farofas temperadas com elevado teor e fonte de fibras, ou seja, as duas farinhas alternativas, farinha de batata doce e farinha de proteína texturizada de soja, agregaram valor funcional ao produto sem que houvesse um grande comprometimento do teor de fibras final dos mesmos.

AGRADECIMENTOS

Ao IFSULDEMINAS Campus Machado pela concessão da bolsa de iniciação científica e ao IFSULDEMINAS pelo auxílio financeiro para a execução do projeto.

REFERÊNCIAS

BRASIL. Agência Nacional de Vigilância Sanitária (ANVISA). RDC N° 54, de 12 de novembro de 2012. Dispõe sobre o Regulamento Técnico sobre Informação Nutricional Complementar. **Diário Oficial União**, Poder Executivo, Brasília, DF, nov. 2012. Seção 1, p.3.

BROCA, C.L.C.; DEVIDÉ, J.C; SEIBEL, N.F. Elaboração e Caracterização de Farofas Temperadas à Base de Okara Desidratado, p. 37 -54. In: **Tópicos em Ciências e Tecnologia de Alimentos:** Resultados de Pesquisas Acadêmicas - Vol. 1. São Paulo: Blucher, 2016. 418 p.

INSTITUTO ADOLFO LUTZ . **Métodos físico-químicos para análise de alimentos**. 1 ed. digital. São Paulo: Instituto Adolfo Lutz, 2008. 1020 p.

JEMZIYA, M.B.F.; MAHENDRAN, T. Physical quality characters of cookies produced from composite blends of wheat and sweet potato flour. **Ruhuna journal of science**, n. 18, p. 12-23, 2017.

OLATUNDE, G.O; HENSHAW, F.O.; IDOWU, M.A.; TOMLINS, K. Quality attributes of sweet potato flour as influenced by variety, pretreatment and drying method. **Food Science & Nutrition**, v. 4, n. 4, 623–635 p., 2016.

SARDINHA, A.N.; CANELLA, A.S.; MARTINS, A.P.B.; CLARO, R.M.; LEVY, R.B. Dietary sources of fiber intake in Brazil. **Appetite**, n. 79, p. 134–138, 2014.

UNIVERSIDADE DE CAMPINAS. NEPA. **Tabela brasileira de composição de alimentos-TACO.** ed. 4., rev. e ampl. Campinas: Book Editora, 2011. 161 p.