

INFLUÊNCIA DOS DIFERENTES TIPOS DE MANEJO DO SOLO NA QUALIDADE FÍSICA DE UM LATOSSOLO VERMELHO DISTRÓFICO

Gabriela Soares Santos ARAÚJO¹; Adriano Gonçalves de CAMPOS², Aline Martineli BATISTA³; Paulo Antônio Martins da Costa COURA⁴; Maurilio Fernandes de OLIVEIRA⁵; Diego Antônio França de FREITAS⁶, Bruno Montoani SILVA⁷,

RESUMO

O volume de água no solo e sua disponibilização à planta são de suma importância para a produção agrícola. Objetivou-se aferir a qualidade física do solo a partir de regressões lineares entre atributos indicadores em diversos sistemas de manejo. As propriedades do solo avaliadas foram: densidade do solo, porosidade total, macroporosidade, microporosidade e capacidade de água disponível. Concluiu-se que os sistemas de manejo exerceram influência sob os atributos testados.

INTRODUÇÃO

O desenvolvimento dos vegetais está diretamente relacionado com a quantidade de água disponível para a planta. Dessa forma, a escassez desse

soaresgabriela038@gmail.com

Universidade Federal de São João Del Rei - campus Sete Lagoas. Sete Lagoas/MG. E-mail:

Universidade Federal de São João Del Rei - campus Sete Lagoas. Sete Lagoas/MG. E-mail: adrianogcampos@yahoo.com.br

Universidade Federal de São João Del Rei - campus Sete Lagoas. Sete Lagoas/MG. E-mail: martineli.aline@gmail.com

Universidade Federal de São João Del Rei - campus Sete Lagoas. Sete Lagoas/MG. E-mail: paulomc.coura@hotmail.com

Embrapa Milho e Sorgo. Sete Lagoas/MG. E-mail: maurilio.oliveira@embrapa.br

Universidade Federal de Viçosa. Florestal/MG. E-mail: diegofranca@ufv.br

Universidade Federal de São João Del Rei - campus Sete Lagoas. Sete Lagoas/MG. E-mail: montoani@ufsj.edu.br

recurso acarreta em redução da produtividade. Grande parte da água exigida pela planta no seu crescimento é fornecida pelo solo (NETTO et al., 1999). Sendo assim, o conhecimento das propriedades físicas e do comportamento da água no solo torna-se imprescindíveis.

O revolvimento do solo se torna inevitável em alguns casos, tendo como destaque áreas compactadas. Dessa forma, a aplicação dessa prática de manejo resulta em uma melhor infiltração de água no perfil do solo. Nesses casos, o revolvimento deve ser realizado logo após o preparo e nos estádios iniciais de crescimento e desenvolvimento da cultura (ALBUQUERQUE et al., 2005).

Grande parte dos estudos físicos do solo utiliza a densidade do solo (Ds) deste como um indicador, baseados no fato em que a elevação da Ds acarreta na redução da porosidade total e da macroporosidade e no aumento da microporosidade (LIMA et al., 2007).

A faixa ideal para a curva de retenção de água (RWC) está compreendia entre 0,6 a 0,7 m³m⁻³ (REYNOLDS et al., 2008). A RWC é considerada um indicador robusto que sofre pouca influência da textura do solo, além de exercer influência na qualidade do solo com reflexos em produtividade para a maioria das culturas.

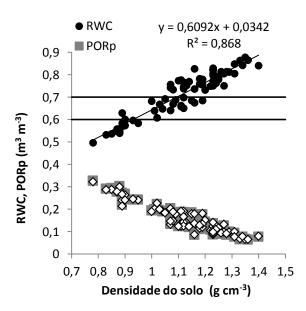
Nesse contexto, buscou-se verificar a qualidade física do solo a partir de regressões lineares entre atributos indicadores em diferentes sistemas de manejo.

MATERIAL E MÉTODOS

O experimento foi realizado em campo experimental no município de Sete Lagoas, MG. O clima regional é tipo Cwa conforme Köppen. Predomina na área a classe de solo Latossolo Vermelho distrófico (EMBRAPA, 2013). A área foi cultivada com milho durante todos os anos de forma sistemática, há 20 anos. Adubações e tratos culturais seguiram as recomendações para a cultura do milho.

O experimento foi conduzido em blocos casualizados (DBC), contendo seis tratamentos, quatro profundidades e três repetições Analisaram-se os seguintes tratamentos: Grade Aradora (GA), Arado de Aiveca (AA), Arado de Disco (AD), Arado de Disco/Grade Aradora (AD/GA), Semeadura Direta (SD) e área de Cerrado Nativo (CN).

Para a realização das análises físicas do solo, coletaram-se amostras indeformadas em outubro e novembro de 2014. Determinou-se a umidade na saturação (θ_s) por meio da pesagem das amostras saturadas, a partir da qual foi


estimada a porosidade total (Pt). Além disso, foi feita a determinação da umidade em equilíbrio aos potenciais (Ψ) -6 e -1500 kPa, conforme Klute (1986).

Determinou-se a capacidade de água disponível do solo às plantas (CAD) pela diferença entre capacidade de campo obtida a -6 kPa (CC6) e ponto de murcha permanente (PMP) a -1500 kPa. A densidade do solo (Ds) foi obtida pela razão entre a massa de sólidos e o volume do cilindro (EMBRAPA, 2011). A microporosidade (PORm) foi determinada no potencial -6 kPa (EMBRAPA, 2011). A partir da diferença θ_S e o PORm, estimou-se a macroporosidade (PORp) (REYNOLDS et al., 2008).

Foi realizada a análise de variância e o teste de médias Scott-Knott, quando pertinente (FERREIRA et al. 2013), para cada profundidade. A inferência dos valores adequados para os parâmetros avaliados foi feita com base no método de Regressão Linear proposto por Reynalds et al. (2008).

RESULTADOS E DISCUSSÃO

A densidade do solo (Ds) variou entre 0,93 e 1,11 g cm⁻³ (figura 1) para a faixa ideal de 0,6 a 0,7 m³m⁻³ de capacidade relativa de água (RWC) (REYNOLDS et al. 2008).

Figura 1: Variação da densidade do solo (Ds), Macroporosidade (PORp), capacidade de aeração (Acb) e capacidade relativa de água (RWC), com base na faixa ideal de 0,6 a 0,7.

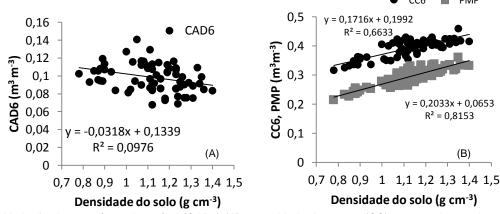
Nos tratamentos com sistema de manejo e no perfil do solo, observou-se Ds média superior em relação à área de referência (CN) (Tabela 1), assim como em outros estudos (COSTA et al., 2006 e ARAÚJO et al., 2004). O tratamento AD foi

uma exceção, no qual a média de Ds encontrada foi de 0,98 g cm⁻³, valor similar ao obtido para CN, para a camada superficial. Em relação ao tratamento AD, o mesmo comportamento foi notado por Oliveira et al. (2004) em Latossolo submetido a vinte anos de cultivo, tendo como justificativa o fato do arado movimentar o solo, deixando-o mais solto temporariamente.

A Ds não diferiu entre os demais sistemas de manejo. Isto também foi observada em outros experimentos (COSTA et al., 2006 e ARAÚJO et al., 2004). O aumento da Ds nas áreas de manejo está associado ao revolvimento e ao tráfego de máquinas e implementos para preparo do solo. Destaca-se que no SD que não há revolvimento do solo era esperada a compactação.

Ao se estabelecer uma relação entre macroporosidade e a faixa ideal de RWC, obteve-se uma PORp entre 0,123 e 0,245 m³ m⁻³(Figura 1). A PORp sofreu influência dos manejos nas camadas subsuperficiais, na qual foi observada sua redução, resultados semelhantes foram encontrados por Costa et al. (2006) e Silva et al. (2005). Já a porosidade total (Pt) alterou-se da superfície até 20 cm. Os resultados encontrados podem ser relacionados ao tráfego de máquinas.

Os diferentes tratamentos não exerceram grande influência sobre a PORp e PORm na camada 0-5 cm. Encontrou-se valores de PORm superiores ao CN nas demais camadas do solo (Tabela 1), como previsto por Lima et al. (2007). A compactação decorrente do uso de maquinários, evidenciada pelo aumento gradativo da Ds, possivelmente, proporcionou a fragmentação dos macroporos em poros menores, justificando, assim, a maior PORm nessas áreas. A camada 20-40 cm não apresentou redução estatisticamente significativa da Pt (Tabela 1).


Não houve relação significativa entre a CAD e a Ds (Figura 2A). A relação não significativa entre a CAD6 e a Ds é justificada pelo comportamento semelhante e positivo entre as curvas das médias de CC6 e do ponto de murcha permanente a 1500 KPa (PMP) (Figura 2B).

Na camada de 5-10 cm, os tratamentos AA, AD e AD/GA apresentaram valor de CAD superior a CN, diferindo dos demais tratamentos e profundidades. Em seu trabalho, Oliveira et al. (2004) observou o aumento da CAD, na camada de 0-05 cm, em sistema de SD, o que não sucedeu no presente estudo. Tal divergência pode estar relacionada a diferenças no manejo empregado.

Tabela 1 – Variação da Densidade do solo (Ds), Porosidade total (Pt), Macroporosidade (PORp), Microporosidade (PORm) e capacidade de água disponível (CAD6) com interação entre tratamentoXprofundidades.

Tuetementee	Ds	Pt	PORp	PORm	CAD6
Tratamentos	(g cm⁻³)	m³ m ⁻³			
0-5 cm					
GA	1,07 b	0,547 b	0,184 a	0,363 a	0,098 a
AA	1,13 b	0,546 b	0,163 a	0,382 a	0,098 a
AD	0,98 a	0,580 b	0,224 a	0,355 a	0,090 a
AD/GA	1,11 b	0,552 b	0,183 a	0,369 a	0,088 a
SD	1,14 b	0,547 b	0,146 a	0,400 a	0,092 a
CN	0,88 a	0,623 a	0,283 a	0,340 a	0,107 a
05-10 cm					
GA	1,25 b	0,533 b	0,102 c	0,431 a	0,107 a
AA	1,18 b	0,536 b	0,148 b	0,388 a	0,086 b
AD	1,16 b	0,538 b	0,132 b	0,406 a	0,076 b
AD/GA	1,31 b	0,504 b	0,094 c	0,409 a	0,081 b
SD	1,21 b	0,512 b	0,104 c	0,408 a	0,101 a
CN	0,83 a	0,634 a	0,311 a	0,323 b	0,100 a
10-20 cm					
GA	1,17 b	0,523 b	0,120 b	0,403 b	0,099 a
AA	1,18 b	0,547 b	0,153 b	0,394 b	0,102 a
AD	1,18 b	0,534 b	0,123 b	0,411 a	0,084 a
AD/GA	1,30 b	0,508 b	0,093 b	0,415 a	0,091 a
SD	1,20 b	0,519 b	0,107 b	0,413 a	0,098 a
CN	0,86 a	0,598 a	0,274 a	0,324 c	0,094 a
20-40 cm					
GA	1,14 b	0,556 a	0,158 b	0,398 a	0,121 a
AA	1,18 b	0,542 a	0,142 b	0,399 a	0,107 a
AD	1,15 b	0,565 a	0,152 b	0,413 a	0,109 a
AD/GA	1,19 b	0,519 a	0,114 b	0,405 a	0,098 a
SD	1,12 b	0,539 a	0,135 b	0,404 a	0,113 a
CN	0,89 a	0,596 a	0,248 a	0,347 b	0,113 a

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente pelo teste de Scott-Knott a 5%.

Figura 2: Variação da capa água disponível (CAD6) (A), capacidade de campo (CC) e ponto de murcha permanente (PMP) (B) em função da densidade do solo para todos os manejos avaliados.

CONCLUSÕES

Em geral, os manejos alteraram os atributos físicos do solo, reduzindo sua qualidade em relação ao CN. A faixa ideal de Ds foi de 0,93 e 1,11 g cm⁻³ e macroporosidade de 0,123 e 0,245 m³ m⁻³

REFERÊNCIAS

- ALBUQUERQUE, J.A.; ARGENTON, J.; BAYER, C., WILDNER, L.P.; KUNTZE, M. A. G. Relação de atributos do solo com a agregação de um Latossolo Vermelho sob sistemas de preparo e plantas de verão para cobertura do solo. **Revista Brasileira de Ciências do Solo**, Viçosa, v. 29, n. 3, p. 415-424, mai./ jun. 2005.
- ARAUJO, M. A.; TORMENA, C. A. & SILVA, A. P. Propriedades físicas de um Latossolo Vermelho distrófico cultivado e sob mata nativa. **Revista Brasileira de Ciências do Solo**, Viçosa, v. 28, n. 2, p. 337-345, mar/ abr. 2004.
- COSTA, E. A.; GOEDERT, W. J.; SOUSA, D. M. G. DE. Qualidade de solo submetido a sistemas de cultivo com preparo convencional e plantio direto. **Pesquisa Agropecuária Brasileira**, Brasília, v. 41, n. 7, p.1185-1191, jul. 2006.
- EMBRAPA Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisas de Solos. **Manual de métodos de análises de solos**. 2.ed. Rio de Janeiro: Embrapa Solos, p. 230. 2011.
- EMBRAPA Empresa Brasileira de Pesquisa Agropecuária. **Sistema Brasileiro de Classificação de Solos**. 3 ed. Brasília, DF: Embrapa Solos, 353 p. 2013.
- FERREIRA, E. B.; CAVALCANTI, P. P.; NOGUEIRA, D. A. **ExpDes: Experimental Designs pacakge**. R package version 1.1.2. 2013. Disponível em: http://CRAN.R-project.org/package=ExpDes. Acesso em: 23 ago. 2015.
- KLUTE, A. Water retention: laboratory methods. In: BLACK, C. A., ed. Methods of Soil Analysis. I. Physical and mineralogical methods. Soil Science Society of America, **American Society of Agronomy**, Madison, p. 635-662. 1986.
- LIMA, C. G. R.; CARVALHO, M. P.; MELLO, L. M. M.; LIMA, R. C. Correlação linear e espacial entre a produtividade de forragem, a porosidade total e a densidade do solo de Pereira Barreto (SP). **Revista Brasileira de Ciências do Solo**, Viçosa, v. 31, p. 1233-1244, nov./ dez. 2007.
- NETTO, A. O. A.; NACIF, P. G. S.; REZENDE, J. O. Avaliação do conceito de capacidade de campo para um Latossolo Amarelo coeso do estado da Bahia. Revista Brasileira de Ciência do Solo, Viçosa, v. 23, n. 3, p. 661-667, jul./ set. 1999.
- OLIVEIRA, G. C.; DIAS JUNIOR, M. S.; RESCK, D. V. S. & CURI, N. Caracterização química e físico-hídrica de um Latossolo Vermelho após vinte anos de manejo e cultivo do solo. **Revista Brasileira de Ciências do Solo**, Viçosa, v. 28, p. 327-336, mar./ abr. 2004.
- REYNOLDS, W.D.; DRURY, C.F.; YANG, X.M. & TAN, C.S. Optimal soil physical quality inferred through structural regression and parameter interactions. **Geoderma**, Amsterdam, v. 146, p. 466-474. 2008.