

ESTIMAÇÃO DO CRESCIMENTO DE FRUTOS DE FIGO POR MODELOS AGROMETEOROLÓGICOS

<u>Daniel C. BASTOS</u>¹; Lucas Eduardo de O. APARECIDO² Paulo S. de SOUZA³; Deyvisson A. BERTO⁴; Antônio G. M. NÍCOLI⁵; Gentil L. M. Filho⁶

RESUMO

Objetivou-se determinar modelos não lineares para estimação do desenvolvimento do comprimento total dos frutos, o diâmetro longitudinal e o transversal e o volume dos frutos da figueira. O experimento foi implantado no IFSULDEMINAS - Câmpus Muzambinho. Utilizaram-se plantas de figueira adultas em excelente estado fitossanitário. As avaliações começaram com o aparecimento dos frutos. Foram avaliados semanalmente: o comprimento total dos frutos (mm), o diâmetro longitudinal (mm) e o transversal (mm) e o volume dos frutos (cm³). Utilizou-se regressões não lineares sigmoidais com quatro parâmetros, sendo otimizados pela ferramenta solver do Excel. A escolha dos modelos foi feita pela precisão (R²). Os modelos não lineares desenvolvidos demonstraram-se acurados e precisos para a estimação do comprimento dos frutos, o diâmetro longitudinal e o transversal e o volume dos frutos da figueira em função dos Graus Dias.

Palavras-chave: Modelagem; Fruticultura; Climatologia;

1. INTRODUÇÃO

A fruticultura possui importância social e econômica no país, onde há imensa quantidade de cultivares adaptáveis, e com potencial promissor. A área estimada de produção de frutíferas de clima temperado é de 151.732 ha, com ênfase na produção de Videiras de mesa e viníferas, maçãs, figo, morango, pera, amora, caqui, pêssegos, mirtilo, framboesa, ameixas e nectarinas (FACHINELLO et al., 2011). Sendo que o figo possui uma produção nacional de aproximadamente 28.000 toneladas, equivalendo a 11ª fruta mais exportada do país (IBGE, 2015).

O manejo de podas é de fundamental importância, na condução da cultura, considerando que a planta produz frutos nos ramos brotados no mesmo ciclo, ou seja, do ano. A condução da figueira utilizada no Brasil é a poda drástica, que constitui em deixar uma haste principal, de 40-60cm, três ramos primários, 15-20cm de comprimento, onde estão os ramos produtivos.(DALASTRA et al., 2009). A poda de frutificação da figueira, no Brasil, acontece nos meses de julho e agosto (CHALFUN et al., 1998).

Encontram-se trabalhos na literatura com modelagem não linear em frutos, como Matarazzo et al., (2013) que observou modelos para determinar a curva de desenvolvimento dos frutos de lulo, da antese a maturidade completa, e observaram que o padrão de desenvolvimento do fruto ajusta-se ao modelo sigmoidal simples, com três estágios de crescimento. E, Alves et al., (2013) estimaram o desenvolvimento dos frutos do maracujazeiro doce por meio de modelos, e concluíram que o desenvolvimento do maracujá ajustou-se ao

modelo sigmoidal simples. Na literatura não foi encontrado trabalhos que realizam a estimação do crescimento de frutos de figo em função das condições climáticas, assim, objetivou-se com este trabalho estimar o crescimento do fruto de figo utilizando modelos não lineares em função do somatório de graus dias.

2. MATERIAL E MÉTODOS

O experimento foi desenvolvido em área experimental do setor de fruticultura do Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Campus Muzambinho. A cidade de Muzambinho está situada a 21°20'47" de latitude sul, 46°32'04" de longitude oeste. A altitude média da região gira em torno de 1040 m, apresentando um clima tropical úmido, com temperaturas médias anuais variando em torno de 18°C e precipitação média anual de 1605 milímetros (APARECIDO; SOUZA, 2015).

No experimento foi utilizada a cultivar Roxo de Valinhos, conduzida com espaçamento de 3,8 m x 2,0 m, transplantado em abril de 2011. Após o inicio da frutificação das plantas (12/11/2013), semanalmente foram avaliados: o comprimento dos frutos (pedúnculo + fruto) (mm), o diâmetro longitudinal (mm) e o transversal (mm), ambos utilizando um paquímetro (1 mm de precisão), e o volume dos frutos (cm³). Para a contabilidade dos Graus Dia foram utilizados os dados da estação climatológica do IFSULDEMINAS. Para geração dos modelos para estimação dos dados acumulados dos frutos, empregou-se análise de regressão, utilizando-se modelos de regressões não lineares sigmoidais com quatro parâmetros (Equação 1).

$$Y = Y_{MAX} + \frac{Y_{MIN} - Y_{MAX}}{1 + \left(\frac{X}{X_0}\right)^p} \tag{1}$$

Em que, Y max = é o ponto máximo da curva (valor final); Y min = é o ponto de mínimo da curva (valor inicial); x_0 = ponto de máximo crescimento; p = taxa média no ponto de máximo crescimento.

A estimação dos parâmetros nos modelos não-lineares foi feita pelo método de mínimos quadrados ordinários usando o Solver do Excel[®]. Na escolha dos modelos, avaliouse a acurácia pelo coeficiente de determinação (R²). A temperatura basal utilizada na contabilidade dos Graus dias foi de 8°C, como foi estudado por Souza et al., (2009). Para a contabilidade do acumulo de Graus Dia foi utilizado a subtração da temperatura basal na temperatura media diária, que foi contabilizada dia após dia.

3. RESULTADOS E DISCUSSÕES

Os modelos não lineares ajustados foram todos significativos, pois apresentaram baixos valores de $R^2 \approx 1.0$, indicando que é possível a estimação do crescimento dos frutos de figo em função dos graus dias e da evapotranspiração potencial. De maneira geral, o modelo não linear teve boa adaptação sobre as variáveis, comprimento total, diâmetro longitudinal e diâmetro transversal. Por exemplo, no ajuste do figo com 3 hastes, esses parâmetros demonstraram R^2 de 0,97, 0,95, 0,95 respectivamente. Os frutos de figo completaram o seu desenvolvimento com 77 dias, que correspondem a 1295 graus dias por ciclo⁻¹ e 248 mm por ciclo⁻¹. As diferentes quantidades de hastes no cultivo da figueira não proporcionaram diferenças nos parâmetros avaliados. O comprimento total do fruto demonstrou um ponto máximo de crescimento de 69,9, 68,8 e 67,9 mm, para os figos com 3, 6 e 12 hastes, respectivamente.

O diâmetro longitudinal apresentaram valores máximos de crescimento de 41,1, 42,7 e 39,1 mm respectivamente para 3,6 e 12 hastes. O fruto de figo com maior diâmetro longitudinal o cultivado com 6 hastes, e o menor cultivado em 12 hastes. O ponto máximo de crescimento para o diâmetro longitudinal foram de 186,8, 191,2 e 179,6 mm de ETP, concluindo que a figueira conduzida com 12 hastes apresentou o crescimento do diâmetro longitudinal antecipado dos demais. Os valores máximos de crescimento para o diâmetro transversal foram de 60,0, 61,6 e 58,0 mm respectivamente para as plantas conduzidas sob 3, 6 e 12 hastes, sendo o figo cultivado em 6 hastes que apresentaram maior diâmetro transversal, o ponto máximo de crescimento ocorreu em 145,6, 142,9 e 149,9 mm de ETP respectivamente, sendo que, as plantas de figo conduzidas sob 6 hastes, foram as que chegaram ao ponto de colheita mais rápido.

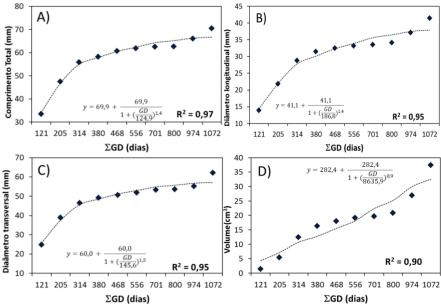


Figura 1. Desenvolvimento do fruto de figo com 3 hastes em função do somatório de graus dias, Muzambinho.

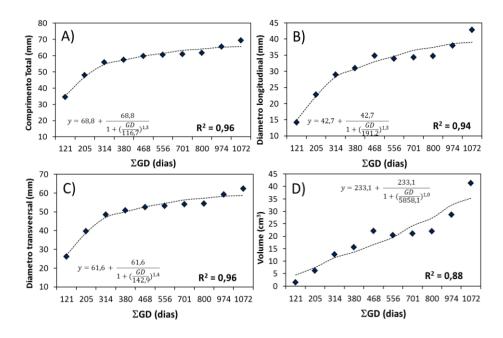


Figura 2. Desenvolvimento do fruto de figo com 6 hastes em função do somatório de graus dias, Muzambinho.

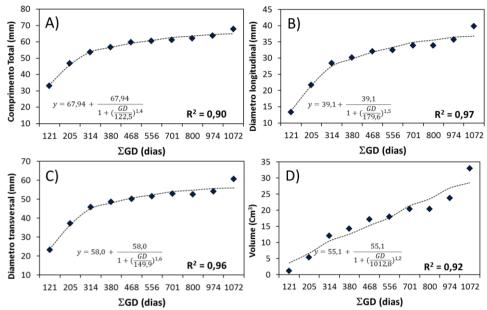


Figura 3. Desenvolvimento do fruto de figo com 12 hastes em função do somatório de graus dias, Muzambinho.

5. CONCLUSÕES

Com os modelos não lineares foi possível estimar o comprimento total dos frutos, diâmetro longitudinal e diâmetro transversal com elevadas precisão. Não foi observadas diferenças no desenvolvimento dos frutos de figueira em função do numero de hastes. Do florescimento da figueira até o ponto de colheita do fruto há necessidade de um acumulo de 1295 GD.

REFERÊNCIAS

ALVES, R. R. et al., Desenvolvimento do maracujá doce em Viçosa, Minas Gerais. **Rev. Ceres**, Viçosa, v. 59, n.6, p. 127-133, 2012.

APARECIDO, L. E. O; SOUZA, P. S. Boletins Climáticos. Acesso em: http://www.muz.ifsuldeminas.edu.br/index.php/boletins. Acesso em: 5 de jun. 2016.

CHALFUN, N.N.J. et al., Frutíferas de clima temperado. Lavras: Ufla/Faepe, 1998. v.7, 304p.

DALASTRA, I. M. et al. Épocas de poda na produção de figos verdes 'roxo de valinhos' em sistema orgânico na região oeste do paraná. **Revista Brasileira de Fruticultura**, Jaboticabal, v. 2, n. 31, p.447-453, jun. 2009.

FACHINELLO, J.C. et al., Situação e perspectivas da fruticultura de clima temperado no Brasil. **Revista Brasileira de Fruticultura**, Jaboticabal, v.especial, p.109-120, out. 2011.

MATARAZZO, P. H. M. et al., Desenvolvimento dos frutos de lulo (solanum quitoense lam), em Viçosa-Mg. **Revista Brasileira de Fruticultura**, Jaboticabal - SP, v. 35, n. 1, p. 131-142, 2013.

SOUZA, A. P. et al. Temperaturas basais e soma térmica para a figueira podada em diferentes épocas. **Revista Brasileira de Fruticultura**, Jaboticabal, v. 2, n. 31, p.314-322, jun. 2009.