# Aplicação de Uréia via Foliar em Substituição à Adubação Nitrogenada de Cobertura na Cultura do Feijão.

<u>Felipe Ferreira Guimarães<sup>1</sup></u>, Bruno Felício Silviano Felis<sup>2</sup>; Júlio César de Carvalho<sup>3</sup> e João Afonso de Carvalho<sup>4</sup>

<sup>1,2,4</sup>IFSULDEMINAS-Campus Machado, Machado, MG; <u>felip.guimaraes@live.com</u>; <sup>2</sup>brunofeliciofelis@hotmail.com; <sup>3</sup>Universidade Federal Rural do Rio de Janeiro, UFRJ, <u>juliocesardecarvalho@rocketmail.com</u>; <sup>4</sup>jafocarvalho@yahoo.com.br.

### Introdução

Para Malavolta (1978), os efeitos da adubação em feijoeiro são citados em inúmeros trabalhos, mas, percebe-se que as respostas são muito contraditórias e influenciadas pelo ambiente de cultivo, especialmente, com relação ao nitrogênio (N), este até por ser um elemento muito instável na natureza, a sua absorção, via solo, nem sempre é satisfatória.

A adubação foliar na cultura do feijão, deve ser vista como opção para substituir a cobertura nitrogenada via solo, por ser esta uma pratica trabalhosa que exige muita mão de obra ou máquinas especiais na sua aplicação por Rosolem et al. (1987). O mesmo autor ainda relata que doses e épocas de aplicação de N via foliar são muito importantes, para que não venha apresentar nas plantas, problemas de fitotoxicidade.

Este trabalho objetivou avaliar os efeitos de diferentes doses de uréia via foliar e em cobertura na produtividade e outros componentes da produção de feijão, bem como as possíveis interações entre os tratamentos associada à prática da inoculação, assim, encontrar uma concentração de calda que influencie as características da planta e proporcione maior produtividade de grãos sem que cause problemas de fitotoxicidade.

#### Material e Métodos

O experimento foi realizado a campo em área do IFSULDEMINAS-Campus Machado, Sul de Minas, com altimetria de 820 m. O solo é do tipo Argissolo Vermelho-Amarelo eutrófico, a declividade do local é de 8% e chove de 1300 a 1500 mm ano concentradas de Outubro a Marco, as temperaturas são de 18 a 26 °C (CARVALHO, 2006).

A semeadura se deu em 20/11/2011 e foi no sistema convencional com uma aração com grade aradora, seguido de duas gradagens. A adubação básica de semeadura foi de acordo com a análise de solo e as recomendações de Chagas et al. (1999) para MG e foi de 462 kg.ha<sup>-1</sup> da fórmula 04-14-08. O material genético semeado foi a cultivar Carioca Pérola com espaçamento entre linhas de 0,5 m e densidade de semeadura de 15 sementes viáveis por

metro de sulco. A colheita ocorreu na segunda quinzena de fevereiro de 2012. Previamente as sementes foram tratadas quimicamente e inoculadas com *Rhizobium phaseoli*, ainda acrescentou-se as sementes uma dose de cobalto e molibdênio (CoMo).

O experimento fatorial 3x3 constituiu-se por nove tratamentos e três repetições, num total de 27 parcelas compostas pela conjugação de três doses de N em cobertura (C) (C = 00 kg N; C = 30 kg; C = 60 kg N/ha<sup>-1</sup>) e três doses de adubação foliar contendo uréia (F) (F1 = 00%; F2 = 10%; F3 = 20%), mas ambas, aplicadas em associação com a inoculação das sementes. As parcelas foram constituídas de seis linhas de cinco metros de comprimento, espaçadas de 0,5 m entre elas (15 m²) com área útil de oito m².

A adubação de cobertura foi aplicada em dose única e com o solo úmido aos 25dias após a emergência (25 DAE) na fase de  $V_3$ - $V_4$ . Já as adubações foliares foram aplicadas em três vezes. A primeira, na fase de  $V_2$ - $V_3$  (18 DAE); a segunda, na fase de  $V_5$  (32 DAE) e a terceira, na fase de  $V_5$  (75 DAE). Na última aplicação, adicionou-se o fungicida (Azoxystrobin; 0,12 kg.ha<sup>-1</sup>) para controlar a doença antracnose (*Colletotrichum lindemuthianum*, Sacc.) que acometeu algumas parcelas.

Como trato cultural adotou-se o manejo integrado de plantas daninhas (MIPD) e aplicou-se em pré-emergência o herbicida S-Metalacloro (1,25 L ha<sup>-1</sup>) mais duas capinas manuais. A colheita realizou-se quando 95% das vagens estavam maduras ou secas.

Algumas características de importância para a cultura foram avaliadas com o objetivo de relacionar os efeitos das diferentes doses de adubação nitrogenada em cobertura associadas aos diferentes percentuais (%) de uréia via foliar. As características avaliadas foram: Produtividade de grãos; número de vagens por planta; número de grãos por vagem e número de grãos por planta.

#### Resultados e Discussão

Os resultados das avaliações no esquema fatorial para as características acima citadas são apresentadas na Tabela 1. Nela, nota-se significância estatística (\*) para uma ou outra característica. Porém, quando houve interação entre os tratamentos (C\*F), realizou-se o eu desdobramento e estão assinalados na respectiva Tabela 1 de forma autoexplicativa.

Assim, nota-se na Tabela 1, que houve significância para adubação de cobertura (C\*) em função da produtividade de grãos, cujo resultado é exibido na Tabela-2 e na Figura 1.

Na Tabela 2, a dosagem de N de 60 kg.ha<sup>-1</sup> em cobertura, acarretou maior produtividade de feijão (691,19 kg) e superou os demais. Nota-se que o tratamento testemunha, com apenas nitrogênio via fixação biológica (FBN), superou o tratamento 30

kg.ha<sup>-1</sup> e produziu 618,74 kg.ha<sup>-1</sup> e 560,89 kg.ha<sup>-1</sup> respectivamente. Na Tabela 2, última coluna, vê-se que uréia via foliar não diferiu estatisticamente sobre a produtividade de grãos, porém mostra que  $F_{10\%}$  foi superior (630 kg) que  $C_{30}$  (560,89 kg), e  $F_{20\%}$  produziu um pouco menos (5,69%) que  $C_{60}$  de N (691,19 kg), mas economicamente pode ser interessante, pois fica menos em conta que adubação de cobertura, corroborada por ROSELEM et al. (1987).

**TABELA 1** – Resumo das análises de variâncias no esquema fatorial para produtividade de grãos (Prod); número vagens por planta (Vg.Pl); número de grãos por vagem (Gr.Vg) e número de grãos por planta (Gr.Pl.). IFSULDEMINAS-Campus Machado, 2011/2012

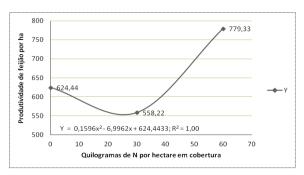
| Fontes de     | GL | QM                       |                      |               |                 |
|---------------|----|--------------------------|----------------------|---------------|-----------------|
| variação (FV) |    | Prod                     | Vg.Pl                | Gr.Vg         | Gr.Pl           |
| Cobertura (C) | 2  | 38.359,0749*             | 8,3159 <sup>NS</sup> | 0,7622*       | 273,8711*       |
| Foliar (F)    | 2  | $10.724,8808^{NS}$       |                      | $0,2037^{NS}$ | 1.922,1378*     |
| CxF           | 4  | 9.150,5624 <sup>NS</sup> | $6,1793^{NS}$        | 0,2751*       | 296,2756*       |
| Blocos (Bl)   | 2  | $2.814,2043^{NS}$        | $1,1070^{NS}$        | $0,0599^{NS}$ | $213,1200^{NS}$ |
| Erro          | 16 | 3.270,0664               | 4,1975               | 0,0703        | 71,0050         |
| CV (%)        | -  | 9,17                     | 7,85                 | 6,22          | 7,54            |
| Média geral   | -  | 623,60                   | 4,26                 | 4,26          | 11,80           |

<sup>\*</sup> Significativos pelo teste F (p≤0,05). Não significativo.

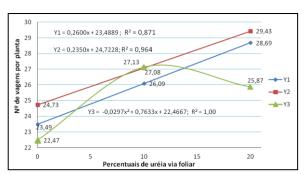
**TABELA 2** – Médias para produtividade em kg.ha<sup>-1</sup> de grãos em função das diferentes doses de adubação de cobertura e uréia via foliar. IFSULDEMINAS-Campus Machado 2011/2012

| N em cobertura (kg ha <sup>-1</sup> ) | Produtividade 1 | Uréia via foliar (%) | Produtividade 1 |
|---------------------------------------|-----------------|----------------------|-----------------|
| 00                                    | 618,74 b        | 00                   | 586,07 a        |
| 30                                    | 560,89 c        | 10                   | 630,74 a        |
| 60                                    | 691,19 a        | 20                   | 654,00 a        |

<sup>&</sup>lt;sup>1</sup>Médias seguidas da mesma letra não diferem entre si, pelo teste Scott-Knott (p≤0,05)


A figura 1, mostra o desdobramento de cobertura 60 kg.ha<sup>-1</sup> dentro de foliar na concentração de 20% de uréia ( $C_{60}$ : $F_{20}$ ) que se mostrou mais eficiente e produziu 779,43 kg.ha<sup>-1</sup> e proporcionou a maior produção, apesar de que o resultado tenha sido obtido em apenas uma conjunção dos fatores entre as nove possíveis, dessa forma, pode-se afirmar que os tramentos ( $C \times F$ ) exerceram pouca influência sobre a produtividade de grãos. Conclusões que são corroboradas pelo trabalho de ARF et al. (2004).

A Tabela 1, em vagem por planta, ocorreu significância apenas para adubação foliar (F\*). Os resultados do teste de média podem ser vistos na Tabela 3 e na Figura 2 de regressão.


Na Tabela 3, a dosagem de uréia (20%) foi a que proporcionou a maior formação de vagens por planta, apesar da dose intermediária (10%) ter sido estatisticamente igual. Porém, é um componente de produção muito importante para a produtividade de grãos e qualquer acréscimo, reflete na produtividade final de grãos ARF et al.(2004).

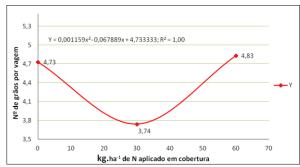
Já a Figura 2, mostra o desdobramento de F:C. Na mesma, conclui-se que o tratamento

sem cobertura ou até 30 kg.ha<sup>-1</sup>, associada a doses crescentes de uréia via foliar, influenciam positivamente o número de vagens por planta. Por outro lado, dose máxima de adubação foliar e de cobertura (C<sub>60</sub>:F<sub>20</sub>) influenciou negativamente e causou elevada queda de flores e frutos jovens pelo excesso de N nos tecidos em formação, conclusões avalizadas pelas citações de RHOADES (2012).

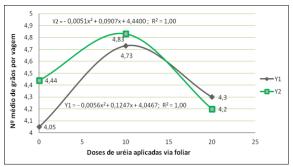


**FIGURA 1** – Representação gráfica da equação de regressão para produtividade, em kg.ha<sup>-1</sup> de grãos, em função do desdobramento de C:F<sub>20</sub>.




**FIGURA 2** – Representação gráfica da equação de regressão número de vagens por planta, em função do desdobramento de  $F:C_0(Y1)$ ;  $F:C_{30}(Y2)$  e  $F:C_{60}(Y3)$ .

**TABELA 3** – Médias para número de vagens por planta, em função das diferentes doses de uréia via adubação foliar. IFSULDEMINAS-Campus Machado 2011/2012.


| Número médio de vagens por planta <sup>1</sup> |
|------------------------------------------------|
| 23, 67 b                                       |
| 26,56 a                                        |
| 28,10 a                                        |
|                                                |

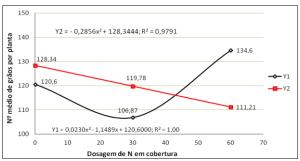
<sup>&</sup>lt;sup>1</sup> Médias seguidas da mesma letra não diferem entre si, pelo teste Scott-Knott (p≤0,05)

Na Tabela 1, em grãos por vagem, houve significância estatística para foliar (F\*) e na interação (C\*F). Assim, desdobrou-se a interação e são apresentadas nas Figuras 3 e 4.

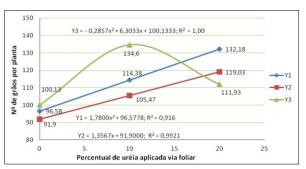


**FIGURA 3** – Representação gráfica da equação de regressão para número de grãos por vagem, em função do desdobramento de C:F<sub>10</sub>.




**FIGURA 4** – Representação gráfica da equação de regressão para número de grãos por vagem, em função do desdobramento de  $F:C_0$  (Y1) e  $F:C_{60}$  (Y2).

A Figura 3 traz o desdobramento de (C:F) e como a significância ocorreu em apenas uma combinação de cobertura versus foliar (C:F<sub>10</sub>) das nove possíveis, pode-se afirmar que a


adubação de cobertura exerce pouca ou nenhuma influência sobre esse importante componentes de produção de feijão, o número de grãos por vagem. Resultado semelhante foi encontrado por Barbosa et al. (2008). Já, Arf et al. (2004), obtiveram resultado conflitante, mas explicam que número de grãos por vagens é uma característica própria da cultivar.

Para verificar a interdependência entre as variáveis, desdobrou-se F:C (Figura 4) e Houve significância em (F:C<sub>0</sub>) e (F:C<sub>60</sub>). Na referida figura nota-se que a adubação foliar exerce pouca influência sobre o número de grãos por vagem, até porque é uma característica genética, sendo mais influenciada pelo tamanho do fruto (do legume). Das nove possibilidades possíveis, apenas duas combinações (F:C<sub>0</sub> e F:C<sub>60</sub>) foram significativas. Ainda, pode-se concluir que feijoeiro inoculado mais  $F_{10}$  versus  $C_0$  ou,  $C_0$  ou, pode ser recomendado com segurança para esse componente de produção.

Ainda na Tabela 1, para número de grãos por planta, vê-se que apresentou interação significativa para (C\*F). Assim, foi desdobrada e os resultados de (C:F) e (F:C) estão inseridos nas Figuras 5 e 6.



**FIGURA 5** – Representação gráfica da equação de regressão para número de grãos por planta, em função do desdobramento de  $C:F_{10}$  (Y1) e  $C:F_{20}$  (Y2).



**FIGURA 6** – Representação gráfica da equação de regressão para número de grãos por planta, em função do desdobramento de  $F:C_0$  (Y1);  $F:C_{30}$  (Y2) e  $F:C_{60}$  (Y3).

Na figura 5, para número de grãos por planta, pode-se inferir que adubações de cobertura, exerce pouca influência sobre o número de grãos por vagem, pois ocorreu significância em apenas duas situações (C:F<sub>10</sub> e C:F<sub>20</sub>) das nove possíveis. Ao contrário, quando se desdobrou foliar dentro de adubação de cobertura (F:C) (Figura 6) encontrou-se três significâncias F:C<sub>0</sub>; F:C<sub>30</sub> e F:C<sub>60</sub>. Em Y1 e Y2, percentuais crescentes de uréia via foliar, associadas às sementes inoculadas ou, com aplicação de até 30 kg.ha<sup>-1</sup> de N em cobertura, proporcionaram maior números de grãos por planta e foram os melhores.

#### Conclusões

• Adubação de N em cobertura (C<sub>60</sub>) exerceu forte influencia sobre produtividade de grãos;

- Adubação foliar 20% não foi significativa para produtividade de grãos, mas se mostrou ser mais econômica pela pequena diferença de produção (5,96%) se comparada a  $C_{60}$ .
- Níveis máximos de uréia via foliar (F<sub>20</sub>) versus inoculação das sementes ou, com até 30 kg.ha<sup>-1</sup> de N em cobertura, influenciaram positivamente o número de vagens por planta.
  Enquanto níveis máximos de foliar e cobertura se mostraram negativos e provocaram abortamento de flores e frutos jovens;
- Os tratamentos cobertura versus foliar exerceram pouca influência sobre o número de grãos por vagens e grão por planta, mas sem deixar de destacar que F<sub>20</sub> em feijoeiro apenas inoculado (C<sub>0</sub>) e F<sub>20</sub> versus C<sub>30</sub> proporcionaram maior número de grãos por planta.

# Agradecimentos

Ao FAPEMIG pelo fornecimento de bolsas e auxílio financeiro.

## Referências Bibliográficas

ARF, O; RODRIGUES, R.A.F; DE SÁ, M.E; BUZETTI, S; NASCIMENTO, V.do; **Manejo do solo, água e nitrogênio no cultivo de feijão**. Pesquisa agropecuária brasileira, Brasília, v.39, n.2, p.131-138, fev. 2004.

BARBOSA, A.S.; LOPES, A.S; SOUTO FILHO, S.N.; GOES, R.J. **Produtividade do feijoeiro submetido ao manejo de irrigação e adubação nitrogenada – terceiro ano de plantio direto.** UEMS, Unidade Universitária de Aquidauana, MS, 2008. Disponível em http://periodicos.uems.br/index.php/enic/article/view/2024. Acesso em 25 de agosto de 2012.

CARVALHO, J.A. Espaçamento e densidade de semeadura para arroz de terras altas de ciclo superprecoce, 1996, 83 P. Dissertação (Mestrado em fitotecnia) Lavras, UFLA, MG.

CHAGAS, J.M. et al. Recomendação de adubação para o feijoeiro. In: RIBEIRO, A.C.; GUIMARÃES, P.T.G.; ALVARES V., V.H. (Ed.). **Recomendações para uso de corretivos e fertilizantes em Minas Gerais.** 5ª aproximação, Viçosa, MG, 1999, v.1, p.306-307.

RHOADES, H. Bean blossom problems: reason for bean blossoms falling off without making pods. Texto publicado na internete, em <a href="http://www.gardeningknowhow.com/vegetable/bean-blossoms-no-pods.htm">http://www.gardeningknowhow.com/vegetable/bean-blossoms-no-pods.htm</a>. Acessado em 29 de agosto de 2012.

MALAVOLTA, E. (coord.) Nutrição e adubação. In: Simpósio Brasileiro de Feijão 1, Viçosa, 1971. **Anais**. São Paulo, SP, 1972, p.209-242.

ROSOLEM, C.A. **Nutrição e adubação do feijoeiro**. Piracicaba: Potafós, 93 p. (Boletim Técnico, 8), 1987.