ISSN 2319-0124

ESTIMATIVA DA EVAPOTRANSPIRAÇÃO POTENCIAL (ETp) PARA LAVRAS

Everton A. da COSTA¹; Katia A. CAMPOS²; Welison L. SOARES³

RESUMO

A evaporação potencial é de suma importância na construção de projetos de irrigação e controle da quantidade de água necessária durante o ciclo agrícola. Sendo assim, objetivou-se com esse trabalho a construção de série temporal que possibilita determinar as estimativas de evapotranspiração potencial para 2017, no município de Lavras, MG, aplicando-se os modelos sazonais aditivo e multiplicativo.

Palavras-chave: Série temporal; Modelo Aditivo; Modelo Multiplicativo.

1. INTRODUÇÃO

O município de Lavras, localizado no Sul de Minas Gerais, caracteriza-se pela produção agropecuária se destaca especialmente pelo café e pelo gado leiteiro, passando por outras implantações agrícolas, de acordo com o Instituto Brasileiro de Geografia e Estatística, IBGE (2017).

Um grande problema na agricultura gira em relação a quantidade de água que estará disponível para a cultura, ou seja, a precipitação pluviométrica durante os ciclos da mesma, principalmente na construção de projetos de irrigação e planejamento temos que levar em conta que planta é um ser vivo dependente de água para sobreviver, entretanto ela também transpira, ocorrendo a perda de através da parte aérea (TAIZ e ZEIGER, 2006). Quando juntamos a evaporação da água com a transpiração chegamos ao termo evapotranspiração, no entanto para um planejamento temos que avaliar o máximo de perda, para evitar surpresas, utilizamos a evapotranspiração potencial (ETp) no planejamento agrícola se deve em função da necessidade hídrica da cultura, devendo levar em conta a perda máxima de água do solo e da planta para o ambiente, a junção desses dois fenômenos e denominado evapotranspiração (CAMARGO e CAMARGO, 2000).

Este trabalho teve como objetivo fazer uma estimativa de evapotranspiração potencial para o ano de 2017, através de uma construção de série temporal.

2. MATERIAL E MÉTODOS

¹ Graduado em Agronomia, IFSULDEMINAS Campus Machado – evertonaureglietti@gmail.com

Docente, IFSULDEMINAS Campus Machado – katia.campos@ifsuldeminas.edu.br

³ Graduando em Administração, IFSULDEMINAS, Campus Machado – welison_lsoares@hotmail.com

9ª Jornada Científica e Tecnológica do IFSULDEMINAS

6º Simpósio da Pós-Graduação

ISSN 2319-0124

O trabalho foi realizado a partir da aquisição de dados de precipitação diária junto à Agência Nacional de Águas, ANA (2017), provenientes da estação meteorológica do município de Lavras, MG, (código 02145036), localizada na Bacia do Rio Paraná, sub-bacia do Rio Grande, nas coordenadas 21°14'S e 45°00'W a uma altitude de 918 m. Essa estação meteorológica é operada pelo Instituto Nacional de Meteorologia (INMET).

As medições de evapotranspiração diárias foram analisadas, em períodos mensais de janeiro de 2003 a dezembro de 2016, sendo as medições disponíveis no banco de dados da estação metereológica, e que testados através dos modelos de séries temporais, sazonal aditiva e multiplicativa (MAKRIDAKIS, 1998; MORETTIN; TOLOI, 1987).

Modelo Sazonal Aditivo:

$$\begin{split} L_t &= \alpha \left(\mathbf{Z}_t - \, \mathbf{S}_{t-s} \right) + (1 - \alpha) (\mathbf{L}_{t-1} + \mathbf{T}_{t-1}) \\ T_t &= \beta (\mathbf{L}_t - \, \mathbf{L}_{t-1}) + (1 - \beta) \mathbf{T}_{t-1} \\ S_t &= \gamma (\mathbf{Z}_t - \, \mathbf{L}_t) + (1 - \gamma) \mathbf{S}_{t-s} \\ \widehat{\mathbf{Z}}_{t+k} &= \mathbf{L}_t + k \mathbf{T}_{t+} \mathbf{S}_{t-s+k} \end{split}$$

Modelo Sazonal multiplicativo:

$$\begin{split} L_t &= \alpha \frac{z_t}{S_{t-s}} + (1 - \alpha)(L_{t-1} + T_{t-1}) \\ T_t &= \beta (L_t - L_{t-1}) + (1 - \beta)T_{t-1} \\ S_t &= \gamma \frac{z_t}{L_t} + (1 - \gamma)S_{t-s} \\ \widehat{Z}_{t+k} &= (L_t + kT_t)S_{t-s+k} \end{split}$$

em que: L_t = Média móvel; T_t = tendência; S_t = Sazonalidade; Z_{t+k} = Previsão; k= Comprimento Sazonal; α , β e γ são constantes de suavização maiores que 0 e menores que 1.

As análises estatísticas foram realizadas com o auxílio do aplicativo Microsoft Office Excel 2007 ®.

3. RESULTADOS E DISCUSSÕES

Ao analisarmos a Figura 1 vemos todas as leituras históricas de Evapotranspiração potencial para município de Lavras, juntamente, observada com a distribuição linear, a função observada e a média móvel, amortizando e suavizando as oscilações dos valores, deixando

ISSN 2319-0124

mais fácil a compreensão da tendência dos dados.

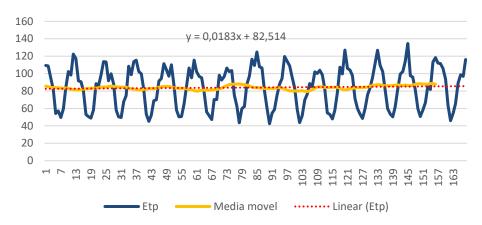


Figura 1- Amostras e tendência da evapotranspiração potencial no município de Lavras, MG, jan/2003 a dez/2016.

Para melhorar a análise foi utilizado um amortecimento dos dados médios anuais da evapotranspiração, em termos de média móvel de 12 meses. Na Figura 2, fica claro a sazonalidade no ciclo da ETp, o mesmo foi visualizado por Costa, Reis e Campos (2017), que nos meses de maio e junho temos as menores aferições ficando caracterizado como baixa e os demais como alta.

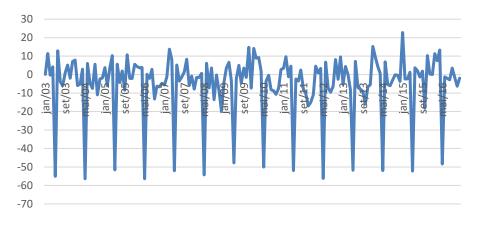


Figura 2- Representação do Ciclo Aditivo da evapotranspiração potencial de jan/2003 a dez/2016.

Visualiza-se a previsão de ETp para o ano de 2017, na Tabela 1, sendo que a previsão, em que todas as médias mensais ficaram dentro do intervalo predito e que foram calculados a partir de:

Previsão =
$$rT_t \times S$$

onde, T = tendência; S = sazonalidade; r = ciclo alto ou baixo;

9ª Jornada Científica e Tecnológica do IFSULDEMINAS

6º Simpósio da Pós-Graduação

ISSN 2319-0124

r = 0.9718, se $t = 5 \times 12n$; r = 1.0088, se $t \neq 5 \times 12n$

n∈ N.

Tabela 1 - Previsão da ETp, em mm, para 2017 no município de Lavras.

Mês	Previsão	Desvio Padrão	Intervalo	
Jan	105,83	7,3932	98,43	113,22
Fev	94,91	6,2659	88,64	101,17
Mar	93,18	5,5513	87,63	98,73
Abr	76,17	4,6951	71,48	80,87
Mai	54,25	3,1678	51,08	57,42
Jun	45,46	4,8425	40,62	50,30
Jul	48,15	3,5612	44,59	51,72
Ago	59,69	4,9812	54,71	64,67
Set	73,74	6,4895	67,25	80,23
Out	88,03	9,0546	78,98	97,08
Nov	91,57	7,5361	84,03	99,11
Dez	104,54	8,5827	95,95	113,12

4. CONCLUSÕES

Foi possível estimar a Evapotranspiração potencial para o Município de Lavras, MG, através modelo de séries temporais aditivo e multiplicativo.

REFERÊNCIAS

AGÊNCIA NACIONAL DE ÁGUAS - ANA. **Hidroweb - Sistema de Informações Hidrológicas.** Disponível em: www.hidroweb.ana.gov.br. Acesso em: 03 ago. 2017.

CAMARGO, A.P.; CAMARGO, M.B.P. Uma revisão analítica da evapotranspiração potencial. **Bragantia**, Campinas, 59, 125-137, 2000.

COSTA, E. A.; REIS, L. R.; CAMPOS, K.A. . Ajuste da evapotranspiração potencial provável para Machado/MG. **In**: 62ª Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria (RBras) e 17º Simpósio de Estatística Aplicada à Experimentação Agronômica (SEAGRO), Lavras, 2017.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Cidades**@. Disponível em: <www.ibge.gov.br/cidadesat/default2.php>Acesso em: 05 ago. 2017.

MAKRIDAKIS, S., WHEELWRIGHT, S. C.; HYNDMAN, R. J. 1998. Forecasting methods and applications, 3^a ed., John Wiley, New York, 1988.

MORETTIN, P. A.; TOLOI, C. M. C..**Previsões de séries temporais**, 2ª ed., Atual,São Paulo, 1987.

TAIZ, L.; ZEIGER, E. Fisiologia Vegetal. 3. ed. Porto Alegre, Ed Artmed, 2006. 719 p.