ISSN 2319-0124

INFLUÊNCIA DA TORREFAÇÃO NO TEOR DE FENÓLICOS E NA ATIVIDADE ANTIOXIDANTE DO CAFÉ ARÁBICA

Polyana de F. Cardoso¹; Felipe C. PEDROSA²; Anderson F. LUZ³; Thamiris G. Sousa⁴; José M. A. MENDONÇA⁵; Mário L. V. RESENDE⁶; Ingridy S. RIBEIRO⁷

RESUMO

O café é uma das bebidas mais apreciadas em todo o mundo, principalmente por seus atributos sensorial, estimulante e antioxidante. Uma etapa importante para preparação da bebida é na torrefação,pois, realça as melhores características de sabor, aroma e acidez de cada tipo de grão de café. A planta do café produz os compostos fenólicos por meio do seu metabolismo secundário que são responsáveis pela ação antioxidante. Sendo assim, o presente trabalho analisou a influência do grau de torra (clara, média, escura) no teor de compostos fenólicos e atividade antioxidante do café arábica. O teor de compostos fenólicos foi determinado pelo método de Folin-Ciocalteau e a atividade antioxidante pelo método do DPPH. O maior teor de compostos fenólicos foi encontrado na torra clara (93,54 mg Eq AG/100g), e por consequência, tal torra apresentou maior potencial antioxidante, com IC50 de 29,99 µg/mL-¹. Pode-se concluir que a torra clara é a mais recomendada para obter maior atividade antioxidante e teor de compostos fenólicos em comparação com os outros graus de torra.

Palavras-chave:

Coffea arábica; DPPH; Torra, Atividade Antioxidante.

1. INTRODUÇÃO

O café pertence à família Rubiaceae, do gênero Coffea e dentre as diversas espécies existentes, os principais do ponto de vista agroeconômico são Coffea arábica Le Coffea canephora PR. A planta de café produz frutos com polpa doce e fina, em cujo interior se encontram duas sementes, que são os grãos de café, base para utilização na indústria cafeeira (HALAL, 2008). De acordo com descrições feitas por Rossetti (2007), o café arábica origina sabor suave, aromático, para ser bebido puro sem nenhum "blend". É a espécie mais complexa, com 44 cromossomos, e só pode fazer cruzamentos com plantas da mesma espécie, o que evita cruzamentos negativos. Para classificar os graus de torra, a Associação Brasileira da Indústria de Café (ABIC, 2008) recomenda a seguinte relação entre o ponto de torra e o número do disco agtron: torra clara- disco agtron nº 65; torra média - disco agtron

¹ IFSULDEMINAS – pdf.cardoso@hotmail.com

² IFSULDEMINAS – felipecamargop@hotmail.com

³ IFSULDEMINAS – luz.af3@gmail.com

⁴ IFSULDEMINAS – thamiris.gsousa@gmail.com

⁵ IFSULDEMINAS – jose.mendonca@muz.ifsuldeminas.edu.br

⁶ UFLA – mlucio@dfp.ufla.br

⁷ IFSULDEMINAS – ingridyribeiro@muz.ifsuldeminas.edu.br

9ª Jornada Científica e Tecnológica do IFSULDEMINAS

6º Simpósio da Pós-Graduação

ISSN 2319-0124

n° 55; torra escura - disco agtron n° 45. Para obter a torra clara, o grão deve ficar no processo de torrefação por sete minutos, de nove a onze minutos da origem a torra média, já a torra escura é entre doze e treze minutos de torrefação de 180 a 240° C. Estudos epidemiológicos e experimentais realizados nas últimas décadas comprovaram a atividade antioxidante de produtos de origem vegetal, fontes de compostos fenólicos (NATELLA et al., 2002; OKAMURA et al., 2005). A presença dos compostos fenólicos em plantas tem sido muito estudada por tais compostos apresentarem atividades farmacológica e antinutricional e também por inibirem a oxidação lipídica e a proliferação de fungos (NAGEM et al., 1992), além de participarem de 10 processos responsáveis pela cor, adstringência e aroma em vários alimentos (PELEG, H., BODINE, K.K., NOBLE, A.C 1998). Diante do exposto, o presente trabalho teve como objetivo analisar a influência do grau de torra no teor de compostos fenólicos e atividades antioxidantes.

2. MATERIAL E MÉTODOS

2.1 Preparo das amostras

Foram utilizadas amostras de Coffea arábica, codificadas pelo grau de torrefação como 50 (torra clara), 60 (média) e 70 (escura), de acordo com a metodologia de Morais et al., (2008). Após a torrefação, cada amostra foi dividida em triplicata e submetida ao processo de extração em máquina de café expresso, durante um minuto com água potável. Ao término deste processo, os extratos aquosos foram colocados em cápsulas de porcelana e levados para estufa à 65°C por 3 dias, para a retirada da água. Após esse período, o extrato seco foi coletado e armazenado em sacos de polietileno, até o momento das análises.

2.2 Análise de compostos fenólicos

Para análise de compostos fenólicos, uma alíquota (0,5 mL) de cada uma das triplicatas a 1 mg/mL foi misturada com 2,5 mL do reagente Folin-Ciocalteau e 2,0 mL de Na2CO3 4% (m/v) em água destilada. Os tubos foram agitados e após 2 h de incubação ao abrigo da luz à temperatura ambiente, a absorbância foi medida em espectrofotômetro a 740 nm (SINGLETON; ORTHOFER; LAMUELA-RAVENTOS, 1999).

2.3 Análises atividade antioxidante pelo sequestro de radicais livres (DPPH)

Para análise de atividade antioxidante pelo sequestro de radical livre DPPH, diferentes concentrações de cada triplicata das amostras (entre 200 μg/mL e 15 μg/mL, em diluição seriada) foi misturada a 2 mL de etanol e 1 mL de DPPH. Após 45 minutos de reação, a absorbância foi medida

ISSN 2319-0124

em 517 nm. O valor IC50 é o coeficiente de inibição, cuja concentração pode sequestrar 50% dos radicais DPPH da solução (YEN et al., 2005).

2.4 Análise Estatística

A avaliação estatística dos resultados foi realizada por meio do software SISVAR 5.6 pela análise de variância (ANAVA) e aplicado o teste de Scott-Knott para observar as diferenças significativas entre os valores médios (p<0,05) (FERREIRA, 2011).

3. RESULTADOS E DISCUSSÕES

O teor de compostos fenólicos totais foi medido por meio da curva de calibração do ácido gálico em concentrações determinadas e o seu teor em diferentes torras foram expressos com equivalentes de ácido gálico (EAG). Os resultados de fenóis totais, expressos em EAG por grama da amostra estão apresentados na tabela 1.

Tabela 1 - Teor de compostos fenólicos (mg Eq AG/100g amostra). IFSULDEMINAS – *Campus* Muzambinho. Muzambinho / MG, 2017.

Amostra	Fenólicos Totais*
50 (escura)	$83,11 \pm 4,0^{b}$
60 (média)	$86,36 \pm 2,4^{b}$
70 (clara)	$93,54 \pm 1,9^{a}$

Médias seguidas de mesma letras não difere entre si no teste de Scott Knott, (p<0,05)

Foi possível observar que a torra clara diferiu das demais torras no teor de compostos fenólicos. Os resultados mostraram que o teor de compostos fenólicos diminuiu de acordo com o aumento da torrefação. A partir desses resultados pode-se sugerir que a atividade antioxidante também diminui de acordo com o aumento de grau de torrefação, já que o poder oxidativo de uma substância está diretamente relacionado com o teor de compostos fenólicos (CABRAL et al., 2012). O potencial antioxidante mostra que a torra clara obteve o melhor resultado (29,99 μg/mL-¹) para o sequestro de 50% dos radicais livres (IC50) em comparação com os outros tipos de torra (média = 37,77 μg/mL-¹; escura = 37,21 μg/mL-¹). Levando em consideração o valor de IC50 do hidroxibutiltolueno (BHT), padrão de conservante para alimentos processados, a amostra de torra clara do café arábica obteve um resultado 2,35 vezes mais eficaz na atividade antioxidante.

9ª Jornada Científica e Tecnológica do IFSULDEMINAS

6º Simpósio da Pós-Graduação

ISSN 2319-0124

4. CONCLUSÕES

Todos os extratos de café arábica analisados apresentaram atividade antioxidante dependentes do grau de torra e da concentração dos compostos fenólicos. As amostras de café com grau de torra clara foram as que apresentaram maior potencial antioxidante frente ao DPPH·, bem como, maior teor de compostos fenólicos.

AGRADECIMENTOS

Ao INCT-Café, CNPq, FAPEMIG e IFSULDEMINAS – Campus Muzambinho pelo apoio financeiro recebido para a execução deste trabalho.

REFERÊNCIAS

ABIC. **A lenda do café.** 2017. Disponível em: Acesso em: 09 fev. 2017. Abic (2017) (ABIC, 2017). CABRAL, I. S; OLDONI, T. L. C.; ALENCAR, S. M.; ROSALEN, P. L.; MASAHARU, I.. The correlation between the phenolic composition and biological activities of two varieties of Brazilian propolis (G6 and G12). **Brazilian Journal of Pharmaceutical Sciences.** v.48 n.3 São Paulo. Sept. 2012.

CAFEICULTURA. **Como é o processamento do café Solúvel.** 2006. Disponível em:http://revistacafeicultura.com.br/?mat=5937>. Acesso em: 15 fev. 2017.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia (UFLA), v. 35, n.6, p. 1039-1042, 2011.

HALAL, S. L. M. **Composição, processamento e qualidade do café.** 2008. 47 f. TCC (Graduação) - Curso de Bacharelado em Química de Alimentos, Universidade Federal de Pelotas, Pelotas. 2008.

MORAIS, S. A. L et al. Compostos bioativos e atividade antioxidante do café conilon submetidos a diferentes graus de torra. 2009. Disponível em:

http://www.scielo.br/pdf/qn/v32n2/v32n2a11.pdf

NAGEN, T.J., ALBUQUERQUE, T.T.O., MIRANDA, L.C.G. Ácidos fenólicos em cultivares de soja: ação antioxidante. **Arquivos de Biologia e Tecnologia.** Curitiba, v.35, n.1, p.129-138, 1992. PELEG, H., BODINE, K.K., NOBLE, A.C. The influence of acid on adstringency of alum and phenolic compounds. **Chemical Senses.** Oxford, v.23, n.3, p.371-378, 1998.

ROSSETTI, R.P. Determinação de fenóis totais em frutos do café: Avaliações em diferentes fases de maturação. 2007.72f. Dissertação (mestrado em ciências) Universidade de São Paulo. São Carlos.

SINGLETON, V. L.; ORTHOFER, R.; LAMUELA-RAVENTOS, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. **Methods in Enzymology.** v.299, p. 152-178, 1999.

YEN, W.J.; CHANG L.W.; DUH, P.D. Antioxidant activity of peanut seed testa and its antioxidative component, ethyl protocatechuate. **Food Science and Technology.** v.38, p. 193-200, 2005.