

HEATED PIG SYSTEM

Brenda B. de Oliveira¹; Jessica G B. R da Silva¹; Erik V. da Silva¹; Rafael F. R. Moreira¹; Luciana Faria²; Eduardo de P. L. NASCIMENTO³

RESUMO

O projeto *Heated Pig System* foi desenvolvido em uma plataforma de prototipagem eletrônica em Arduino, para o setor de suinocultura do IFSULDEMINAS - Campus Inconfidentes com o objetivo de controlar a temperatura dos ninhos dos leitões, por estes serem pequenos e mais vulneráveis à queda de temperatura e umidade do ambiente onde residem, especificamente no período do inverno. Assim, o projeto ligará automaticamente o aquecedor para manter a temperatura ideal dos leitões quando a do local for menor que 24°C. O projeto encontra-se em fase de teste e já foi implantado em um dos ninhos dos leitões. Como trabalhos futuros, pretende-se averiguar se o conforto térmico dos suínos foi alcançado e verificar se haverá diminuição da mortalidade dos leitões e, consequentemente, o aumento da produção.

Palavras-chave: Protótipo; Arduino; Controle de temperatura.

1. INTRODUCÃO

A eficiência para maximizar a cadeia produtiva de suínos está relacionada a vários fatores, sendo um deles o ambiente saudável e ajustado às necessidades dos animais. Os suínos são animais homeotérmicos, significando que eles precisam manter sua temperatura corporal, e por suas características fisiológicas, possuem dificuldades de se adaptar às flutuações térmicas ambientais e a faixa de temperatura para seu conforto varia com a idade. A temperatura ideal do ambiente em que vive uma fêmea lactante é entre 16°C a 22°C e para um leitão recém-nascido, é entre 32°C a 34°C (Bortolozzo et al., 2011), por serem novos e terem seu sistema termorregulador pouco desenvolvido. Já a zona de conforto térmico para os leitões em desmame é de 24°C (MASSABIE, 2013). Diante disso, os leitões têm maior facilidade para perder seu calor corporal rapidamente.

Amaral et al. (2011), cita que os fatores ambientais que mais afetam os animais por comprometerem o processo da homeotermia são os térmicos, representados por temperatura,

 $^1\,Alunos\,do\,IFSULDEMINAS-{\it Campus}\,Inconfidentes.\,E-mail:brenda0belizario@gmail.com$

² Orientadora, IFSULDEMINAS – Campus Inconfidentes. E-mail: luciana.faria@ifsuldeminas.edu.br

³ Coorientador, IFSULDEMINAS – Campus Inconfidentes. E-mail:eduardo.nascimento@ifsuldeminas.edu.br

umidade, velocidade do ar e radiação.

Observando a dificuldade existente em encontrar uma maneira para manter a temperatura dos leitões em desmame, residentes nos ninhos do setor de suinocultura do IFSULDEMINAS - Campus Inconfidentes, está sendo desenvolvida uma plataforma de prototipagem eletrônica em Arduino para auxiliar no manejo da temperatura do ambiente em que os leitões vivem, visando aumentar a qualidade de vida do animal, melhorar os índices de desenvolvimento para que não ocorram perdas e não afetem em sua produtividade, devido ao melhor conforto térmico.

Portanto, uma das motivações para o trabalho do protótipo, é ter como planejamento futuro a aplicação desse sistema em todo setor de suinocultura do Campus, com intuito de aumentar a produtividade dos suínos, além de implementar o sistema de monitoramento de temperatura e umidade.

2. MATERIAL E MÉTODOS

O projeto *Heated Pig System*, está sendo desenvolvido para a Fazenda-Escola do IFSULDEMINAS - Campus Inconfidentes e será instalado no setor de suinocultura para controlar a temperatura dos ninhos dos leitões em desmame. Para tal, o projeto foi desenvolvido em uma plataforma de prototipagem eletrônica em Arduino. Essa Plataforma utiliza um sensor de temperatura e umidade DHT11(Figura 1) que está ligado a uma placa Arduino UNO (Figura 2), que afere a temperatura do ambiente em que residem os leitões, exibindo a temperatura ambiente em display LCD (*Liquid Crystal Display*) 16 x 2 azul (Figura 3), que regula a temperatura limite, com a ajuda de dois botões (Figura 4) que têm a função de aumentar e diminuir a temperatura limite. Utiliza-se também um aquecedor elétrico portátil de 1500w (Figura 5), Multilaser, que é acionado quando a temperatura ambiente for menor que a temperatura limite, de 24°C e desativado quando for maior de 24°C, por meio de um relé (Figura 6).

Figura 1- Sensor DHT11

Figura 3-Display LCD 16x12

Figura 5- Aquecedor elétrico

Figura 2- Placa Arduino Uno

Figura 4- Botões tipo push-button

Figura 6 - Relé

O diagrama de prototipagem eletrônica em Arduino apresentado na (Figura 7), foi utilizado para o desenvolvimento do projeto *Heated Pig System*.

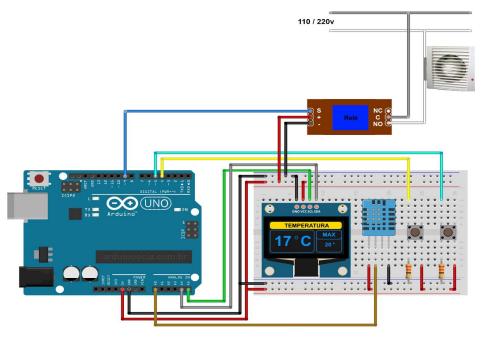


Figura 7 - Diagrama ilustrativo de prototipagem eletrônica em Arduino

Após realizadas as conexões dos componentes da placa Arduino (Figura 7), foi feita a instalação da IDE (ambiente de desenvolvimento) do Arduino para Windows, ferramenta multiplataforma escrita em linguagem Java e derivada dos projetos *Processing* e *Wiring* (Arduino, 2019). Com a IDE instalada e a placa Arduino conectada em computador, definiu-se a placa Arduino utilizada e a porta em que a placa está conectada. Na sequência, iniciou-se a programação incluindo as bibliotecas dos periféricos e dispositivos utilizados no projeto e as instruções para controle de temperatura, acionar e desativar o aquecedor, de modo que a temperatura ambiente dos ninhos dos leitões, fiquem sempre em 24°C.

3. RESULTADOS E DISCUSSÕES

O sistema foi instalado recentemente em um dos ninhos do setor suinocultura da Fazenda-Escola do IFSULDEMINAS - Campus Inconfidentes (Figura 8).

E para averiguar se o protótipo estava desempenhando todas as funções corretamente, testouse o protótipo em dias em que a temperatura estava abaixo ou acima de 24°C. Verificou-se que quando a temperatura era menor que 24°C, foi acionado o aquecedor, e quando a temperatura ultrapassou 24°C, o aquecedor foi desligado.

Logo, concluiu-se que o sistema está funcionando corretamente.

Figura 8. Setor de Suinocultura do IFSULDEMINAS - Campus Inconfidentes. (a) Ninho dos Leitões em desmame, (b) Instalação do Protótipo e (c) Protótipo Instalado em teste.

4. CONCLUSÕES

Pode concluir-se que o projeto em desenvolvimento, está funcionando corretamente conforme o objetivo proposto, que é controlar a temperatura ambiente em 24°C, porém, ainda está em fase de testes, e pretende-se ainda averiguar se o conforto térmico dos suínos foi alcançado verificando-se também se haverá diminuição da mortalidade dos leitões e consequentemente, aumento da produção.

AGRADECIMENTOS

Agradecemos ao IFSULDEMINAS - Campos Inconfidentes, pela oportunidade de desenvolver este projeto e pelos ensinamentos adquiridos durante o curso técnico em Informática.

REFERÊNCIAS

Amaral, A.G. et al. Efeito do ambiente de produção sobre frangos de corte sexados criados em galpão comercial. Arq. Bras. Med. Vet. Zootec., v.63, n.3, p.649-658, 2011.

Arduino. Site oficial. Disponível em: https://www.arduino.cc. Acesso em 02/04/2019.

BORTOLOZZO, F. P.; KUMMER, A. B. H. P.; LESSKIU, P. E.; WENTZ, I.Estratégias de redução do catabolismo lactacional manejando a ambiência na maternidade.2011.

Disponível em: https://www.yumpu.com/pt/document/view/5513889/estrategias-de-reducao-do-catabolismo-lactacional-suinotec. Acesso em 31/06/2019.

MASSABIE, P. **Bâtiment et équipements. In: Mémento de l'éleveur de porc.** 7º Édition, Institut du Porc (IFIP), Paris/FR, 51-70 p., 2013. NEWS, Redação Rural. Cuidados com o leitão recémnascido.