

CARACTERÍSTICAS BROMATOLÓGICAS DA SILAGEM DE HÍBRIDOS DE MILHO SOB DIFERENTES FORMAS DE FORNECIMENTO DE NITROGÊNIO

Bruno C. M. SCALLI¹; Nayara C. da PENHA²; Ariana V. SILVA³; Otavio D. GIUNTI⁴; Mariana T. MANOEL⁵; Paulo C. VICENTE⁶; Mariane B. OLIVEIRA⁷; Poliana C. e COLPA⁸

RESUMO

O fornecimento adequado de nitrogênio é essencial para a obtenção de altas produtividades da cultura do milho, tornando a adubação nitrogenada prática indispensável. Diante disso, objetivou-se com o presente trabalho avaliar as características bromatológicas da silagem de híbridos de milho mediante o fornecimento de nitrogênio através da utilização de formas distintas à cultura. O delineamento experimental foi em blocos casualizados, em esquema fatorial 2x3, sendo dois híbridos de milho (híbrido simples; híbrido triplo) e três formas de N (mineral; composto da avicultura; inoculação das sementes com *Azospirillum brasilense*) com quatro repetições. Os dois tipos de híbridos e as diferentes formas de nitrogênio influenciam parcialmente a composição bromatológica da silagem, sendo o híbrido triplo com maiores porcentagens de extrato etéreo, fibra bruta e fibra detergente ácido e a interação entre o híbrido triplo na presença da inoculação com *A. brasilense* apresenta maior valor de fibra bruta.

Palavras-chave: Azospirillum brasilense; Composto avícola; Fibra bruta; Híbrido; Zea mays L.

1. INTRODUÇÃO

Plantas de milho, assim como outras gramíneas, apesar de apresentarem alta taxa fotossintética, são afetadas por fatores ambientais, em que se destacam aqueles relacionados à baixa fertilidade dos solos. Dessa forma, o fornecimento adequado de nitrogênio (N) é essencial para a obtenção de altas produtividades da cultura, tornando a adubação nitrogenada prática indispensável, muito embora apresente elevado custo econômico (DARTORA et al., 2013). No entanto, existem alternativas como a aplicação de compostos orgânicos e o uso de bactérias, como *Azospirillum* spp., que podem reduzir os custos da adubação nitrogenada.

Além disso, diversos híbridos de milho são lançados no mercado anualmente, justificando a necessidade de avaliá-los nas diversas condições ambientais (CARDOSO et al., 2003).

Assim, objetivou-se avaliar as características bromatológicas da silagem de híbridos de milho

¹ Engenheiro Agrônomo, IFSULDEMINAS – Campus Muzambinho. E-mail: brunoscalli@gmail.com.br

² Engenheira Agrônoma, IFSULDEMINAS – Campus Muzambinho. E-mail: nayara.clarete.p@gmail.com

³ Orientadora, IFSULDEMINAS – Campus Inconfidentes. E-mail: ariana.silva@muz.ifsuldeminas.edu.br

⁴ Coorientador, IFSULDEMINAS - Campus Inconfidentes. E-mail: otavio.ifsuldeminas@gmail.com

⁵ Discente Engenharia Agronômica, IFSULDEMINAS – Campus Muzambinho. E-mail: marilovesz123@gmail.com

⁶ Discente Engenharia Agronômica, IFSULDEMINAS – Campus Muzambinho. E-mail: paulocesarvicente3@outlook.com

⁷ Técnica em Agropecuária, IFSULDEMINAS - Campus Muzambinho. E-mail: maryolivee@gmail.com

⁸ Técnica Administrativa, IFSULDEMINAS – Campus Muzambinho. E-mail: poliana.colpa@muz.ifsuldeminas.edu.br

mediante o fornecimento de nitrogênio através da utilização de formas distintas à cultura.

2. MATERIAL E MÉTODOS

O experimento foi semeado no dia 14 de novembro de 2017 no Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais – IFSULDEMINAS, Campus Muzambinho.

O delineamento experimental foi em blocos casualizados, em esquema fatorial 2x3, sendo dois híbridos de milho (híbrido simples transgênico 2B587RR; híbrido triplo convencional XB7116) e três formas de N (adubação mineral de plantio e cobertura; composto da avicultura; inoculação das sementes com *Azospirillum brasilense*) com quatro repetições, totalizando 24 parcelas.

A colheita da forragem foi realizada nas duas linhas centrais de cada parcela aos 114 dias após a semeadura (DAS) e, após 45 dias, uma amostra de 300 g do terço médio de cada mini-silo foi retirada, seca em estufa de ventilação forçada de ar e processadas em moinho tipo Willey, com peneira de 1 mm de crivo, para a realização das análises físico-químicas em triplicata no Laboratório de Bromatologia e Água do IFSULDEMINAS, Campus Muzambinho: porcentagens de umidade 105°C, material mineral (mm) fixo ou fração cinza, proteína bruta (PB), extrato etéreo (EE), fração glicídica (AOAC, 1990); porcentagens de fibra detergente ácido (FDA) e fibra em detergente neutro (FDN) por método gravimétrico de VAN SOEST (1963) citado por SILVA (1990);

Os dados coletados foram submetidos à análise de variância com aplicação do teste "F" e utilizando-se o programa SISVAR versão 5.3 (FERREIRA, 2011) e, ocorrendo diferença entre as médias, estas foram comparadas entre si pelo teste de Tukey ao nível de 5% de probabilidade.

3. RESULTADOS E DISCUSSÕES

Para as características bromatológicas da silagem, não houve interação significativa para os fatores umidade, matéria mineral, extrato etéreo, proteína, FDN e FDA. Em uma análise separada, os híbridos simples e triplo apresentaram diferenças quanto a extrato etéreo, sendo o híbrido triplo superior ao simples, e para fração glicídica o híbrido simples foi superior ao triplo (Tabela 1).

Na interação entre as diferentes formas de N e os dois híbridos para fração glicídica, a diferença significativa foi apenas para as formas de composto avícola e *A. brasilense*, sendo o híbrido simples superior ao triplo nos dois casos (Tabela 2).

Quanto a análise dos fatores isolados para fibra bruta, FDA e FDN, não ocorreram diferenças entre as formas de N, mas para híbridos, tanto para fibra bruta quanto para FDA, o híbrido simples apresentou valores inferiores ao híbrido triplo (Tabela 3). Fancelli e Dourado Neto (2004) explicam que o teor adequado de FDA na matéria seca da silagem situa-se abaixo de 30%, corroborando com o presente trabalho.

Tabela 1. Umidade, matéria mineral, extrato etéreo, proteína e fração glicídica em porcentagens (%) em função do híbrido de milho e da forma de nitrogênio utilizada. Muzambinho-MG, ano agrícola 2017/2018.

Tratamento	Umidade (%)	Matéria Mineral (%)	Extrato Etéreo (%)	Proteína (%)	Fração Glicídica (%)
Híbrido					
Simples	6,77 A	3,15 A	1,67 B	4,99 A	63,33 A
Triplo	7,21 A	3,02 A	2,17 A	4,99 A	59,78 B
Forma de N					
Mineral	6,91 A	2,94 A	2,09 A	4,80 A	61,87 A
A. brasilense	6,96 A	3,08 A	1,78 A	5,15 A	61,46 A
Composto avícola	7,10 A	2,24 A	1,89 A	5,02 A	61,34 A
CV (%)	8,32	20,54	19,60	17,59	5,08

Médias seguidas de mesma letra na coluna não diferem entre si pelo teste de Tukey (5%).

Tabela 2. Interação entre a forma de N e os diferentes híbridos de milho para a fração glicídica (%). Muzambinho-MG, ano agrícola 2017/2018.

Forma de N —	Híbrido		
roma de N	Simples	Triplo	
Mineral	60,86 Aa	62,88 Aa	
A. brasilense	65,44 Aa	57,49 Ba	
Composto avícola	63,71 Aa	58,99 Ba	
CV (%)	5,08		

Médias seguidas de mesma letra maiúscula na linha e minúscula na coluna não diferem entre si pelo teste de Tukey (5%).

Tabela 3. Fibra bruta, FDA e FDN em porcentagens (%) em função do híbrido de milho e da forma de nitrogênio utilizada. Muzambinho-MG, ano agrícola 2017/2018.

6	, 6		
Tratamento	Fibra Bruta (%)	FDA (%)	FDN (%)
Híbrido			
Simples	19,57 B	21,50 B	47,33 A
Triplo	23,38 A	28,36 A	52,99 A
Forma de N			
Mineral	21,35 A	23,56 A	48,02 A
A. brasilense	21,69 A	25,67 A	51,64 A
Composto avícola	21,39 A	25,56 A	50,82 A
CV (%)	10,26	19,43	11,20

Médias seguidas de mesma letra na coluna não diferem entre si pelo teste de Tukey (5%).

Houve interação entre os tratamentos para fibra bruta, sendo que o híbrido triplo se apresentou superior ao simples para a disponibilização de N com *A. brasilense* e composto avícola (Tabela 4). Já o adubo mineral é superior à inoculação com *A. brasilense* para o híbrido simples e ambos não diferem do composto avícola, mas, para o híbrido triplo, o *A. brasilense* favoreceu a fibra bruta em comparação com a adubação mineral, sendo as duas formas de N similares ao composto avícola (Tabela 4).

Tabela 4. Interação entre a forma de N e os diferentes híbridos de milho para a fibra bruta (%). Muzambinho-MG, ano agrícola 2017/2018.

Forma de N —	Híbrido			
Forma de N	Simples	Triplo		
Mineral	22,41 Aa	20,30 Ab		
A. brasilense	17,56 Bb	25,82 Aa		
Composto avícola	18,74 Bab	24,04 Aab		
CV (%)	10,26			

Médias seguidas de mesma letra maiúscula na linha e minúscula na coluna não diferem entre si pelo teste de Tukey (5%).

4. CONCLUSÕES

Os dois tipos de híbridos e as diferentes formas de nitrogênio influenciam parcialmente a composição bromatológica da silagem, sendo o híbrido triplo com maiores porcentagens de extrato etéreo, fibra bruta e fibra detergente ácido e a interação entre o híbrido triplo na presença da inoculação com *A. brasilense* apresenta maior valor de fibra bruta.

AGRADECIMENTOS

Agradecemos ao IFSULDEMINAS – Campus Muzambinho pela infraestrutura e ao Grupo de Estudos em Agropecuária (GEAGRO) pelo apoio e dedicação para realizar este estudo.

REFERÊNCIAS

AOAC (Association of Official Agricultural Chemists). **Official Methods of the Association of the Agricultural Chemists**. 15. ed. Washington: 1990, v. 2., 1298 p.

CARDOSO, M. J.; CARVALHO, H. W. L. de; SANTOS, M. X. dos; LEAL, M. de L. da S.; OLIVEIRA, A. C. de. Desempenho de híbridos de milho na região meio-norte do Brasil. **Revista Brasileira de Milho e Sorgo**, Parnaíba, v. 2, n. 1, p. 43-52, 2003.

DARTORA, J.; GUIMARÃES, V. F.; MARINI, D.; SANDER, G. Adubação nitrogenada associada à inoculação com *Azospirillum brasilense* e *Herbaspirillum seropedicae* na cultura do milho. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 17, n. 10, p. 1023-1029, 24 jul. 2013. Semestral.

FANCELLI, A. L.; DOURADO NETO, D. **Produção de Milho**. 2. ed. Livro Ceres: Piracicaba, 2004. 360 p.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. **Ciência e Agrotecnologia**, Lavras, v. 35, n. 6, p. 1039-1042, 2011.

SILVA, D. J. **Análise de alimentos**: métodos químicos e biológicos. 2. ed. Viçosa: UFV, Imprensa Universitária, Viçosa, MG, 1990. 165 p.