

DOSES DE *AZOSPIRILLUM BRASILENSE* E NITROGÊNIO EM COBERTURA NA MORFOLOGIA DO SORGO EM MUZAMBINHO-MG

Luiz G. B. REIS¹; Lucas A. MINÓZ²; Ariana V. SILVA³; Júlia L. M. GALDINO⁴; Amanda C. de MORAES⁵; Marina H. COSTA⁶; Higor J. H. RIBEIRO⁷; Marcelo A. de MORAIS⁸

RESUMO

Dentre as práticas para maximização de produtividade destaca-se a fixação biológica de nitrogênio utilizando a bactéria *Azospirillum* spp. Assim, este trabalho teve como objetivo verificar o efeito de doses de *A. brasilense* e nitrogênio em cobertura na morfologia de plantas de sorgo em Muzambinho-MG. O delineamento experimental foi de blocos ao acaso, em esquema fatorial 2x4, sendo a presença e ausência de *A. brasilense* (0 e 250 mL ha⁻¹) e quatro doses de nitrogênio em cobertura (0, 50, 100 e 150 kg ha⁻¹) com três repetições. Foram avaliados no pleno florescimento a altura de planta, o diâmetro do colmo, o comprimento da panícula e o índice de área foliar. Em Muzambinho-MG, na 2ª safra, é necessária a inoculação com *A. brasilense* na dose de 200 mL ha⁻¹ da dose comercial do produto Masterfix Gramineas® ou dose de 100 kg ha⁻¹ de N em cobertura para o incremento de IAF.

Palavras-chave: Altura de planta; Índice de área foliar; Inoculação; Sorghum bicolor (L.) Moench.

1. INTRODUÇÃO

O sorgo é uma espécie de origem tropical e, portanto, exigente em clima quente para poder expressar seu potencial, e, por isso, no Brasil, é cultivado em regiões e situações de temperaturas médias superiores a 21°C (PEREIRA FILHO; RODRIGUES, 2015). Em Minas Gerais, a área de sorgo segunda safra no estado está estimada em 211,3 mil hectares, apresentando sutil tendência de aumento em relação à safra anterior, que foi de 210,4 mil hectares (CONAB, 2019).

Tem-se utilizado a inoculação com a bactéria *Azospirillum brasiliense* em substituição aos fertilizantes nitrogenados, pois além do ganho econômico, traz beneficios ambientais, como a redução na emissão de gases de efeito estufa e se evita a lixiviação de nitrogênio que contaminaria rios e lençóis freáticos (GRÃO EM GRÃO, 2019).

Assim, este trabalho teve como objetivo verificar efeito de doses de A. brasilense e nitrogênio

¹ Discente Engenharia Agronômica, IFSULDEMINAS – Campus Muzambinho. E-mail: guhbernarde1s@gmail.com

² Discente Engenharia Agronômica, IFSULDEMINAS - Campus Muzambinho. E-mail: lucasminoz@gmail.com

³ Orientadora, IFSULDEMINAS – Campus Muzambinho. E-mail: ariana.silva@muz.ifsuldeminas.edu.br

⁴ Discente Engenharia Agronômica, IFSULDEMINAS – Campus Muzambinho. E-mail: julialeticia.martins@gmail.com

⁵ Discente Engenharia Agronômica, IFSULDEMINAS - Campus Muzambinho. E-mail: amoraes445@gmail.com

⁶ Discente Engenharia Agronômica, IFSULDEMINAS – Campus Muzambinho. E-mail: marina000teixeira@gmail.com

⁷ Discente Engenharia Agronômica, IFSULDEMINAS – Campus Muzambinho. E-mail: higorjhr123@gmail.com

⁸ Coorientador, IFSULDEMINAS – Campus Muzambinho. E-mail: marcelo.morais@muz.ifsuldeminas.edu.br

(N) em cobertura na morfologia de plantas de sorgo em Muzambinho-MG.

2. MATERIAL E MÉTODOS

No dia 26 de março do ano agrícola de 2018/19, o experimento foi instalado no Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais (IFSULDEMINAS), Campus Muzambinho em área experimental que possui solo tipo Latossolo Vermelho Amarelo distrófico típico. A temperatura média e a precipitação pluvial média anual são de 18,2°C e 1.605 mm, respectivamente (APARECIDO; SOUZA, 2016).

O delineamento experimental foi o de blocos ao acaso, em esquema fatorial 2 (doses de *A. brasilense*: 0 e 250 mL ha⁻¹) x 4 (doses de N em cobertura: 0, 50, 100 e 150 kg ha⁻¹) com três repetições, totalizando 24 unidades experimentais. As parcelas experimentais foram definidas com espaçamento entre linhas de 0,5 m, 4,0 m de comprimento cada e 1,5 m de largura, composta por 4 linhas, sendo as 2 linhas centrais úteis e densidade populacional de 9 plantas m⁻¹.

Foi realizada uma amostragem de solo na profundidade de 0 a 20 cm, analisada no Laboratório de Solos e Folhas do IFSULDEMINAS, Campus Muzambinho (Tabela 1).

Tabela 1. Atributos químicos do solo antes da semeadura do experimento em Muzambinho-MG, 2ª safra de 2018/19.

Prof.	рН	P	K	Al	Ca	Mg	H+A1	SB	T	P-rem	V	M	M.O.
	água	mg/c	1 m 3			cmo	lc/dm ³ -			mg/L		%	dag/kg
0-20 cm	6,73	85,8	181	0,02	4,49	1,43	4,26	6,4	10,6	21,9	60	0,03	2,61
Métodos de extração: pH: água; M.O.: S. Sulfurosa; P, K, Cu, Fe, Mn, Zn: Mehlich-I; P-rem: CaCl ₂ ; Ca, Mg, Al: KCl;													
H+Al: Tamp	oão SMP;	B: Água	a Quen	te.									

Por ocasião da semeadura do híbrido de sorgo Podium, foi realizada a adubação de base nas quantidades de 100 kg de Superfosfato Simples ha⁻¹, 100 kg de Sulfato de Amônio ha⁻¹ e 104 kg de Cloreto de Potássio ha⁻¹. A adubação de cobertura foi de acordo com o delineamento experimental aos 30 dias após a semeadura (DAS).

A inoculação foi realizada à sombra, também no momento da semeadura, de acordo com o preconizado na legislação brasileira, na dose de 250 mL ha⁻¹ do produto comercial Masterfix Gramineas[®] com as estirpes AbV5 e AbV6 de *A. brasilense* (2x10⁸ células viáveis mL⁻¹) (HUNGRIA, 2011). Para o manejo fitossanitário foi necessária a realização de duas capinas manuais.

No pleno florescimento foram marcadas, ao acaso, dez plantas na área útil de cada parcela para as seguintes coletas de dados: altura média das plantas (cm), determinada com régua graduada, considerando-se para tanto a distância compreendida entre o colo da planta e o ponto de inserção da última folha; diâmetro médio do colmo (mm), avaliado no pleno florescimento o segundo internódio a partir do colo da planta, o qual será mensurado através do uso de um paquímetro; comprimento médio da panícula (cm), determinado com régua graduada, considerando o ponto de inserção da

ráquis até o seu ápice; índice de área foliar (IAF). Das dez plantas marcadas, quatro delas foram cortadas rente ao nível do solo e suas folhas separadas para determinação da área foliar com o medidor da área foliar CI-202 dividido pela área de solo ocupada pelas quatro plantas amostradas.

Os dados coletados nas avaliações foram submetidos à análise de variância com aplicação do teste "F" e utilizando-se o programa SISVAR versão 5.3 (FERREIRA, 2011) e, as médias foram comparadas entre si pelo teste de Scott-Knott ao nível de 5% de probabilidade.

3. RESULTADOS E DISCUSSÕES

Como não houve interação dos fatores testados, os mesmos foram avaliados de forma isolada. Sendo que, quanto as doses de *A. brasilense* utilizada nas sementes, as mesmas não interferiram na altura de planta, diâmetro do colmo e comprimento da panícula, mas quando da utilização da inoculação, o IAF observado foi superior a testemunha sem inoculação (Tabela 2). De acordo com Silva e Lovato (2008), o IAF afeta diretamente a fotossíntese, onde o N atua diretamente, ou seja, no presente trabalho a inoculação supriu a necessidade de N.

Tabela 2. Altura de planta (cm), diâmetro do colmo (mm), comprimento de panícula (cm) e índice de área foliar (IAF) em função da inoculação com *Azospirillum brasilense* (0 e 250 mL ha⁻¹) e diferentes doses de nitrogênio em cobertura (0, 50, 100 e 150 kg ha⁻¹). Muzambinho-MG, 2ª safra de 2018/19.

Tratamento	Altura de planta (cm)	Diâmetro do colmo (mm)	Comprimento de panícula (cm)	IAF
	pianta (ciii)	Conno (mm)	panicula (Cili)	
A. brasilense (mL ha ⁻¹)				
0	95,51 A	13,15 A	20,45 A	0,74 B
200	98,40 A	13,20 A	20,72 A	1,03 A
Dose N cobertura (kg ha ⁻¹)				
0	97,45 A	12,60 A	19,80 A	0,89 B
50	91,68 B	12,85 A	20,50 A	0,84 C
100	100,60 A	13,30 A	21,10 A	0,94 A
150	98,10 A	13,95 A	20,95 A	0,86 C
CV (%)	4,9	14,57	8,79	2,78

Médias seguidas de mesma letra na coluna não diferem entre si pelo teste de Scott-Knott, ao nível de 5% de probabilidade.

Em relação ao fator doses de N em cobertura, as doses de 0, 100 e 150 kg ha⁻¹ elevaram o porte da planta de sorgo em comparação a dose de 50 kg h ha⁻¹, mas não interferiram no diâmetro do colmo e comprimento da panícula (Tabela 2). Para o IAF, a dose de 100 kg N ha⁻¹ foi a que se mostrou mais eficiente, tendo a dose de 0 kg ha⁻¹ como intermediária e as doses de 50 kg ha⁻¹ e 150 kg ha⁻¹ como as de menores IAF (Tabela 2). Segundo Marcelis et al. (1998), IAF em torno de 3, aproximadamente 90% da radiação fotossinteticamente ativa é interceptada pelas folhas do topo do dossel, mas o IAF do presente trabalho ficou bem abaixo de 1 (Tabela 2).

É importante ressaltar que a altura de planta em todos os tratamentos foi inferior (Tabela 2) a reportada pela empresa detentora do híbrido de sorgo utilizado, que cita entre 2,50 e 2,80 m

(BIOMATRIX, 2019), uma vez que a temperatura média de Muzambinho-MG (APARECIDO; SOUZA, 2016) é inferior à média mínima necessária (PEREIRA FILHO; RODRIGUES, 2015).

4. CONCLUSÕES

Em Muzambinho-MG, na 2ª safra, é necessária a inoculação com *A. brasilense* na dose de 200 mL ha⁻¹ da dose comercial do produto Masterfix Gramineas[®] ou dose de 100 kg ha⁻¹ de N em cobertura para o incremento de IAF.

AGRADECIMENTOS

Agradecemos ao IFSULDEMINAS – Campus Muzambinho pela infraestrutura e ao Grupo de Estudos em Agropecuária (GEAGRO) pelo apoio e dedicação para realizar este estudo.

REFERÊNCIAS

APARECIDO, L. E. O.; SOUZA, P. S. **Boletim Climático Nº 21** – Agosto/2016. Disponível em: http://www.muz.ifsuldeminas.edu.br/images/stories/PDF/2014/boletim_2014/Boletim_Clima_Dezembro.pdf. Acesso em: 24 jul. 2018.

BIOMATRIX Sementes. **Podium**. 2019. Disponível em: https://sementesbiomatrix.com.br/produtos/podium/>. Acesso em 30 jul. 2019.

CONAB – Companhia Nacional de Abastecimento. **Acompanhamento da safra brasileira de grãos**: 6º levantamento. Brasília, v. 6, n. 6, mar. 2019. 145 p. Disponível em: <file:///C:/Users/Ariana/Downloads/GraosZmarcoZ2019 completo.pdf>. Acesso em: 20 ago. 2019.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. **Ciência e Agrotecnologia**, UFLA, v. 35, n. 6, p. 1039-1042, 2011.

GRÃO EM GRÃO. Sete Lagoas: Jornal Eletrônico da Embrapa Milho e Sorgo, n. 13, 110. ed., jul. 2019. Disponível em: http://grao.cnpms.embrapa.br/noticia.php?ed=ODM=&id=MzM1. Acesso em: 20 ago. 2019.

HUNGRIA, M. Inoculação com *Azospirillum brasilense*: inovação em rendimento a baixo custo. 2011. Disponível em: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/29676/1/ Inoculação com azospirillum.pdf>. Acesso em: 30 jul. 2019.

MARCELIS, L. F. M., HEUVELINK, E., GOUDRIAAN, J. Modelling biomass production and yield of horticultural crops: a review. **Scientia Horticulturae**, v. 74, p. 83-111, 1998.

PEREIRA FILHO, I. A.; RODRIGUES, J. A. S. (Eds.). **Sorgo**: o produtor pergunta, a Embrapa responde. Brasília: EMBRAPA, 2015. 327 p.

SILVA, P. C. S. da; LOVATO, C. Análise de crescimento e rendimento em sorgo granífero em diferentes manejos com nitrogênio. **Revista da FZVA**, Uruguaiana, v. 15, n. 1, p. 15-33, 2008.