UMIDADE E MATÉRIA MINERAL DE SILAGENS ISOLADAS E COMBINADAS DE MILHO, SORGO E GIRASSOL

José Felipe U. de OLIVEIRA¹; Filippe C. LOPES²; Ariana V. SILVA³; Talita A. TRANCHES⁴; Polyana de F. CARDOSO⁵; Jorge A. A. FIGUEIREDO⁶

RESUMO

O delineamento experimental foi inteiramente casualizado, sendo que as três culturas avaliadas (milho, sorgo e girassol) foram analisadas em 18 porcentagens diferentes, com três repetições, totalizando 54 parcelas. Após análise de umidade a 65º e 105º e matéria mineral (fração cinza), conclui-se que a combinação de 75% M + 25% S apresenta os menores teores que possibilitam a ensilagem com menores perdas por fermentação inadequada.

INTRODUÇÃO

É importante produzir leite e gerar ganho de peso dos animais para corte durante o ano todo, mas a sazonalidade na produção de forragens leva os produtores a adotar práticas de conservações das forragens, em especial na forma de silagem. (VALENTE, 1997).

O milho (*Zea mays* L.) e o sorgo (*Sorghum vulgare*, Pers.) têm sido largamente semeados e utilizados em todo o mundo tanto na alimentação humana quanto na alimentação animal, nesta como grãos e silagem. O milho vislumbra como forragem devido a sua alta produtividade. Assim, têm-se observado também para a cultura do sorgo (RESENDE, 1991).

¹ Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais – Câmpus Muzambinho. Muzambinho/MG, email: <u>felipe-mb13@hotmail.com</u>;

² Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais – Câmpus Muzambinho. Muzambinho/MG, email: <u>filippecarneiro2010@yahoo.com.br</u>;

Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas – Câmpus Muzambinho. Muzambinho/MG, email: ariana.silva@muz.ifsuldeminas.edu.br;

⁴ Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas – Câmpus Muzambinho. Muzambinho/MG, email: <u>teits.a@hotmail.com</u>;

⁵ Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas – Câmpus Muzambinho. Muzambinho/MG, email: pdf.cardoso@hotmail.com;

⁶ Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas – Câmpus Muzambinho. Muzambinho/MG, email: jorge augusto agostini@hotmail.com.

Anualmente, são lançados novos híbridos no mercado, que necessitam ser avaliados quanto a produção e qualidade bromatológica, visto que é frequente, mesmo em híbridos modernos, a ocorrência de baixo desempenho agronômico e de silagens de baixo valor nutritivo.

O teor de matéria seca (MS) por ocasião da ensilagem influi grandemente sobre a natureza da fermentação e a conservação da massa ensilada, sendo que, os teores considerados ideais de MS devem estar entre 28 a 34% (Mc CULOOGH, 1977), pois a quantidade de água da forrageira ensilada correlaciona-se com fatores indesejáveis na mesma, tais como ácido butírico e bases voláteis (ARCHIBALD et al., 1960). Assim como, maiores porcentagens de matéria mineral geram maiores possibilidades de perdas por fermentação inadequada (ASHBELL, 1995).

Neste sentido, realizou-se este projeto para que os resultados sejam transmitidos aos produtores de leite da região, a melhor opção de suplementação de volumoso no que se refere à qualidade de umidade e cinza nas silagens de milho, sorgo e girassol de forma isolada e suas combinações em porcentagens.

MATERIAL E MÉTODOS

O experimento foi conduzido em área experimental do Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Câmpus Muzambinho, no ano agrícola de 2012/2013.

O delineamento experimental realizado foi inteiramente casualizado, sendo três culturas avaliadas (milho, sorgo e girassol) em 18 porcentagens diferentes (Tabela 1) com três repetições, totalizando 54 parcelas.

O híbrido de milho utilizado foi o 2B512 HX (Triplo) de ciclo precoce e dupla aptidão, com uma população de 70.000 pl ha⁻¹ (espaçamento 0,50 m com 3,45 pl m⁻¹ linear). A adubação foi de acordo com a necessidade da cultura e indicação da análise de solo. Usando no plantio 300 Kg de 08-28-16 (15 g m⁻¹ linear), na adubação de cobertura foram utilizados 400 kg de ureia mais 106 kg de cloreto de potássio (KCI - 25 g m⁻¹ linear), totalizando 200-70-184 Kg de NPK.

O híbrido de sorgo semeado foi o 1F305 (simples) de ciclo precoce e finalidade para grão e silagem, panícula semiaberta. O estande utilizado foi 120.000 pl ha⁻¹ (espaçamento 0,50 m com 6 pl m⁻¹ linear). A adubação de plantio 250 Kg de 08-28-16 mais 85 kg de KCl (16,75 g m⁻¹ linear da mistura), na adubação de cobertura foi utilizada 310 kg de ureia (15,5 g m⁻¹ linear). Suprindo a cultura com

Tabela 1. Distribuição dos tratamentos.

Tratamento	Porcentagem (%) de cada cultura		
1	100 M ¹		
2	100 S ²		
3	100 G ³		
4	75 M + 25 S		
5	50 M + 50 S		
6	25 M + 75 S		
7	75 M + 25 G		
8	50 M + 50 G		
9	25 M + 75 G		
10	75 S +25 G		
11	50 S 50 G		
12	25 S + 75 G		
13	50 M + 25 S + 25 G		
14	25 M + 50 S + 25 G		
15	25 M + 25 S + 50 G		
16	75 M + 12,5 S + 12,5 G		
17	12,5 M + 75 S + 12,5 G		
18	12,5 M + 12,5 S + 75 G		

¹ Milho; ² Sorgo; ³ Girassol.

O híbrido de girassol utilizado foi o M734 (simples) de ciclo normal (85 dias), grão com aquênio, finalidade para grão e óleo, teor de óleo (35 a 40%). O estande semeado foi de 950.000 plantas ha⁻¹ (espaçamento 0,50 m com 4,75 pl m⁻¹ linear). A adubação de plantio foi de 110 Kg de 08-28-16 mais 22 kg de KCl mais 60 kg de sulfato de amônio (AS - 9,6 g m⁻¹ linear da mistura), na adubação de cobertura foi utilizado 210 g de SA (10,5 g m⁻¹ linear). Suprindo a necessidade da cultura com 60-30-36 Kg de NPK.

A colheita e ensilagem foram realizadas no dia 28 de fevereiro de 2013, 120 DAS do milho, 84 DAS do sorgo e 72 DAS do girassol. A ensilagem ocorreu com o auxilio mecânico de uma ensiladeira, a qual picou os materiais de milho, sorgo e girassol e, em seguida, realizou-se a combinação nas porcentagens dos tratamentos citados acima. Em seguida, as silagens isoladas e combinadas foram ensiladas em tubos de PVC com 1 m de comprimento e com 100 mm de diâmetro.

As análises iniciaram-se no dia 18 de abril de 2013, quando foi retirada dos tubos de PVC somente a parte central da silagem e levadas para o laboratório. Primeiramente, foram homogeneizadas 250 g, levadas para estufa a 60º para

desidratar. O resíduo mineral fixo ou fração matéria mineral foi determinado gravimetricamente avaliando a perda de peso do material submetido ao aquecimento a 550°C em mufla (AOAC, 1990) e a umidade foi determinada segundo a técnica gravimétrica, com o emprego do calor em estufa ventilada à temperatura de 105°C, com verificações esporádicas até obtenção de peso constante, segundo a AOAC (1990).

Os dados obtidos foram submetidos à análise de variância e as médias dos tratamentos comparadas pelo teste Scott-Knott, ao nível de 5% de probabilidade (FERREIRA, 2011).

RESULTADOS E DISCUSSÃO

Quanto à umidade 65° verificou-se que a combinação 12,5% M + 12,5% S + 75% G foi a que teve maior umidade, seguida da combinação de 75% M + 25% S, 75% M + 25% G e a silagem isolada de 100% de milho (Tabela 2). Enquanto que, a combinação 75% M + 12,5% S + 12,5% G, seguida da silagem isolada de 100% G, foram as de menor umidade a 65° .

Para a umidade 105°, a combinação de 75% M + 25% S foi a de menor umidade, os demais tratamentos não diferiram entre si ao nível de 5% de probabilidade (Tabela 2).

Já para a fração cinza (matéria mineral), a silagem isolada de girassol apresentou o maior teor, seguida da combinação de 25% M + 75% G. Enquanto que, os menores teores de material mineral, que pressupõe menores perdas, foram encontrados para as silagens isoladas de milho e sorgo, assim como para as combinações 75% M + 25% S, 50% M + 50% S, 25% M + 75% S, 75% M + 25% G, 50% M + 25% S + 25% G, 25% M + 50% S + 25% G, 75% M + 12,5% G e 12,5% M + 75% S + 12,5% G (Tabela 2).

Tabela 2. Umidade a 65°C, umidade a 105°C e matéria mineral com silagens isoladas de combinadas de milho, sorgo e girassol. Muzambinho – MG, Safra 2012/13.

Tratamento	Médias das Análises*			
Data de Semeadura	Umidade 65°C (%)	Umidade 105°C (%)	Matéria Mineral (%)	
100% M ¹	30,97 B	8,56 A	2,85 E	
100% S ²	24,95 D	8,66 A	4,03 E	
100% G ³	13,26 I	9,97 A	10,71 A	
75% M + 25% S	30,25 B	5,81 B	3,66 E	
50% M + 50% S	29,04 C	8,57 A	3,67 E	
25% M + 75% S	28,48 C	8,78 A	3,66 E	
75% M + 25% G	30,55 B	10,03 A	3,40 E	
50% M + 50% G	25,13 D	10,08 A	5,46 D	
25% M + 75% G	19,23 G	9,94 A	9,08 B	
75% S + 25% G	23,04 E	9,43 A	6,65 C	
50% S + 50% G	20,19 G	9,74 A	4,61 D	
25% S + 75% G	17,07 H	10,65 A	6,85 C	
50% M + 25% S + 25% G	25,22 D	9,55 A	3,20 E	
25% M + 50% S + 25% G	23,26 E	9,55 A	3,60 E	
25% M + 25% S + 50% G	21,57 F	10,20 A	5,59 D	
75% M + 12,5% S + 12,5% G	10,45 J	9,97 A	3,60 E	
12,5% M + 75% S + 12,5% G	24,69 D	9,80 A	3,97 E	
12,5% M + 12,5% S + 75% G	34,33 A	10,18 A	7,30 C	
CV (%)	3,49	13,38	13,55	

¹ Milho; ² Sorgo; ³ Girassol.

CONCLUSÕES

Para umidade e matéria mineral (fração cinzas), a combinação de 75% M + 25% S apresenta os menores teores que possibilitam a ensilagem com menores perdas por fermentação inadequada.

AGRADECIMENTOS

Agradeço primeiramente a FAPEMIG pela concessão da bolsa e ao Câmpus Muzambinho do IFSULDEMINAS por toda infraestrutura necessária para o desenvolvimento do projeto, à minha Orientadora Ariana Vieira Silva pelo comprometimento e dedicação para com o projeto.

^{*}Médias seguidas de mesma letra na coluna não diferem entre si pelo teste de Scott-Knott, ao nível de 5% de probabilidade.

REFERÊNCIAS BIBLIOGRÁFICAS

AOAC. (Association of Official Agricultural Chemists). **Official Methods of the association of the Agricultural Chemists**. 15.ed., v.2., Arlington, Virginia, D.C., 1990, 1117p.

ARCHIBALD, J. G., KUZMESKI, J. W., RUSSEL, S. Grass silage quality as affected by crop composition and by additives. **Journal Dairy Science**, v.43, n.11, p.1648-53. 1960.

ASHBELL, G. Basic principles of preservation of forage, by-products and residues as silage or hay. Bet Dagan: Agricultural Research Organization, The Volcani Center. 1995. 58p.

FERREIRA, D. F. Sisvar: A computer statistical analysis system. **Ciência e Agrotecnologia**, Lavras, v.35, n.6, p.1039-1042, nov./dez. 2011.

Mc CULLOUGH, M. E. Silage and silage fermentation. **Feedstuffs**, v.49, n.26, p.49-52, 1977.

RESENDE, H. **Cultura do milho e do sorgo para produção de silagem**. Coronel Pacheco: EMBRAPA-CNPGL, 107p. (Documentos, 51). 1991.

VALENTE, J. O. Introdução. In: EMBRAPA. Centro Nacional de Pesquisa de Milho e Sorgo (Sete Lagoas, MG). **Manejo cultural do sorgo para forragem**. Sete Lagoas, 1997, 66p. (EMBRAPA - CNPMS. Circular técnica, 17).