SIMULAÇÃO DA ECONOMIA DE ENERGIA E ÁGUA PARA A HORTA IFSULDEMINAS – CÂMPUS INCONFIDENTES

Alberto Luis PARISE JUNIOR¹; Marcos Caldeira RIBEIRO²; Igor Prado de SOUZA³; Tayrine Parreira BRITO⁴; José Luiz de Andrade Rezende PEREIRA⁵;

RESUMO

O objetivo desse trabalho foi oferecer alternativa aos produtores em reduzir gastos na produção de hortaliças. Realizada no Câmpus Inconfidentes, MG, onde se produz: agrião, alface, beterraba, brócolis, cenoura, couve, couve-flor, pimentão, rabanete, rúcula e tomate. Na estimativa da ETo utilizaram-se dados de temperatura máxima e mínima de novembro 2012 a maio 2013. A partir das relações de afinidade estimou-se economia de 32% de energia elétrica com a utilização de inversores de frequência.

INTRODUÇÃO

O Brasil é um país com enorme potencial produtivo agrícola, no entanto, ainda podem ser aprimoradas diversas atividades, como a possibilidade do aumento da produtividade e suprir de maneira sustentável a demanda do mercado interno e externo. Considerados fatores fundamentais, o uso racional de energia elétrica e de água são componentes substanciais nas propriedades agrícolas.

Uma das maneiras de melhorar os rendimentos é se interando do cenário atual agrícola, onde a partir do acompanhamento do dia a dia no campo, conhecendo novas tecnologias e as necessidades do produtor rural, podem-se

¹ Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais – Câmpus Inconfidentes. Inconfidentes/MG, email: alparisejunior@hotmail.com;

² Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais – Câmpus Inconfidentes. Inconfidentes/MG, email: marcos.ribeiro@ifs.ifsuldeminas.edu.br;

³ Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais – Câmpus Inconfidentes. Inconfidentes/MG, email:igorprado_1@hotmail.com;

⁴ Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais – Câmpus Inconfidentes. Inconfidentes/MG, email: tairine_prospe@hotmail.com.

⁵ Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais – Câmpus Inconfidentes. Inconfidentes/MG, email: joseluiz.pereira@ifs.ifsuldeminas.edu.br.

empregar novas técnicas que favoreçam o setor, facilitando o trabalho e a modernidade ao campo.

De acordo com Turco et al. (2009), a irrigação é fator responsável por grande parte do consumo de energia nas atividades do setor rural, temendo que a cultura possa sofrer algum tipo de estresse hídrico e com isso comprometer a produção, o produtor usualmente irriga em excesso, quando não adota algum tipo de metodologia para tal manejo da cultura. Sendo assim, esse tipo de excesso acaba ocasionando o desperdício de energia elétrica e de água.

O uso racional de energia elétrica é um tema bastante complexo, além de ser muito abrangente, pois vários fatores devem ser levados em consideração, como a conscientização de quem a utiliza, a melhoria e a qualidade dos equipamentos e as técnicas empregadas no desenvolvimento de atividades.

Os inversores de frequência são equipamentos eletrônicos eficientes no controle da rotação em motores elétricos. O emprego deste equipamento tem se tornado viável economicamente, mesmo para motores de menores potências. O seu emprego tem sido justificado no controle de tensão e de frequência (V/f), o que gera: (i) economia de energia, (ii) controle do processo em regime transiente, controle de corrente de partida e controle de tempo de partida, (iii) em regime permanente - durante a operação normal do processo: controle de fator de potência e controle de velocidade e (iv) controle da qualidade de energia, controle de nível de tensão e de desequilíbrio de tensão (SCARCELLI, 2009).

A alteração da frequência de alimentação, quando aplicada em um sistema de bombeamento de água para irrigação, tem influência direta sobre a pressão e vazão de bombeamento (SCARCELLI, 2009), como se podem observar na equação 1 de Rateaux e apresentada por Ribeiro et al. (2010):

$$\left(\frac{F_2}{F_1(1-s)}\right) = \left(\frac{n_2}{n_1}\right) = \left(\frac{Q_2}{Q_1}\right) = \left(\frac{H_2}{H_1}\right)^{1/2} = \left(\frac{P_2}{P_1}\right)^{1/3} \tag{eq. 1}$$

Em que:

F - é a frequência de alimentação elétrica, em Hz;

s - é o escorregamento do motor elétrico, em decimal;

n - é a relação entre rotação, em rpm;

Q - a vazão, em m³/h;

H - é a pressão, em m.c.a.;

P - a potência, em kW.

Sendo assim, o objetivo dessa simulação é oferecer alternativa viável aos produtores rurais, que buscam um caminho para reduzir os custos em áreas irrigadas, minimizar os gastos relativos à energia elétrica e viabilizar a produção com valor e competitividade no mercado, além de contribuir com o meio ambiente.

MATERIAL E MÉTODOS

O presente trabalho é uma simulação de economia de energia e de água para a horta da fazenda do Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Câmpus Inconfidentes, Inconfidentes, MG. A sua localização está na latitude de 22°19'09,7687" S, longitude 46°19'44,1140" W e altitude de 869 metros.

A horta do Instituto conta com uma área de aproximadamente 1600 m², em ambientes protegidos, na qual são cultivadas culturas como: agrião, alface, beterraba, brócolis, cenoura, couve, couve-flor, pimentão, rabanete, rúcula, tomate.

A simulação foi realizada para um sistema de bombeamento com características de potência da motobomba de 4 cv, com vazão de 20 m³/h e de altura manométrica de 35 m.c.a.

Para a realização da simulação dividiu-se a área em três irrigações, sendo: 1ª irrigação: agrião, brócolis, pimentão e rúcula; 2ª irrigação: beterraba, cenoura e rabanete; 3ª irrigação: alface, couve, couve-flor e tomate. Cada irrigação ficou dentro das limitações da vazão máxima de bombeamento. As irrigações foram realizadas a cada dois dias.

A partir das simulações com o uso do inversor de frequência e das equações de afinidade de Rateaux, puderam-se obter valores estimados do consumo de água e energia elétrica gastas no processo de irrigação.

RESULTADOS E DISCUSSÃO

1- Determinação da evapotranspiração

Foram coletados na estação meteorológica dentro da fazenda do Câmpus Inconfidentes, os dados de temperatura mínima e máxima entre os meses de novembro de 2012 e maio de 2013. Com essas informações estimou-se a

evapotranspiração de referência (ETo) pela metodologia proposta por Hargreaves-Samani e adaptada pela Embrapa (2005) (Quadro 1).

Quadro 1 – Evapotranspiração de referência decorrente entre os meses de novembro e maio, em mm. IFSULDEMINAS – Câmpus Inconfidentes. Inconfidentes/MG, 2013.

Mês	Nov	Dez	Jan	Fev	Mar	Abr	Maio
ETo	213,47	193,14	200,09	187,26	153,43	148,08	123,45

2- Consumo de água

Para a jornada de irrigação de 0,25 horas, o Quadro 2 apresentou as exigências de vazão para a irrigação.

Quadro 2 – Vazão contínua para a exigência das culturas. IFSULDEMINAS – Câmpus Inconfidentes. Inconfidentes/MG, 2013.

·							
	Nov	Dez	Jan	Fev	Mar	Abr	Maio
Cultura				L/s			
Agrião	1,35	1,18	1,23	1,27	0,94	0,94	0,76
Alface	1,35	1,18	1,23	1,27	0,94	0,94	0,76
Beterraba	1,50	1,31	1,36	1,41	1,04	1,04	0,84
Brócolis	1,35	1,18	1,23	1,27	0,94	0,94	0,76
Cenoura	1,50	1,31	1,36	1,41	1,04	1,04	0,84
Couve	1,35	1,18	1,23	1,27	0,94	0,94	0,76
Couve-flor	1,35	1,18	1,23	1,27	0,94	0,94	0,76
Pimentão	1,35	1,18	1,23	1,27	0,94	0,94	0,76
Rabanete	1,50	1,31	1,36	1,41	1,04	1,04	0,84
Rúcula	1,35	1,18	1,23	1,27	0,94	0,94	0,76
Tomate	1,33	1,16	1,21	1,25	0,92	0,92	0,74
TOTAL (L/s)	15,29	13,39	13,87	14,37	10,63	10,60	8,56
TOTAL (m ³ /h)	55,03	48,19	49,92	51,73	38,28	38,18	30,80

Nas informações contidas no Quadro 2, foram determinadas os consumos de água para cada planta individual, em L/s, e com o total de cada mês, em L/s e m³/h.

3- Simulação do consumo de energia elétrica

Com uso de inversor de frequência e das relações de afinidade obteve-se o consumo de energia, como apresentado no Quadro 3, em que: F é a frequência de alimentação do motor; Q é a vazão de água bombeada; Hman é a altura

manométrica; P é a potência do conjunto motobomba; e C é o consumo de energia. Nos meses de março, abril e maio optou-se por duas irrigações, para melhor eficiência do sistema de bombeamento e, também, as lâminas de irrigações para as diferentes culturas tiveram de ser submetida a maior lâmina do grupo.

Quadro 3 – Consumo mensal entre os meses de novembro de 2012 e maio de 2013. IFSULDEMINAS – Câmpus Inconfidentes. Inconfidentes/MG, 2013.

	Irrigações	F	Q	Hman	Р	С	C/mês	Total
		Hz	m³/h	m.c.a.	kW	kWh	kWh/mês	kWh/mês
Nov	1 ^a	58	19	33,2	2,7	0,68	10,20	
	2 ^a	48	16	22,8	1,6	0,39	5,80	26,2
	3 ^a	58	19	33,2	2,7	0,68	10,20	
Dez	1 ^a	51	17	25,5	1,8	0,46	6,80	
	2 ^a	42	14	17,5	1,0	0,26	3,90	17,5
	3 ^a	51	17	25,2	1,8	0,45	6,70	
Jan	1 ^a	53	18	27,3	2,0	0,51	7,60	
	2 ^a	44	15	18,8	1,2	0,29	4,30	19,4
	3 ^a	53	18	27,1	2,0	0,50	7,50	
Fev	1 ^a	55	18	29,3	2,3	0,56	8,40	
	2 ^a	46	15	20,2	1,3	0,32	4,80	21,6
	3 ^a	55	18	29,1	2,2	0,56	8,30	
Mar	1 ^a	60	20	35,0	2,9	0,74	11,04	21,10
	2 ^a	56	19	30,7	2,4	0,60	9,06	21,10
Abr	1 ^a	60	20	35,0	2,9	0,74	11,04	20,03
	2 ^a	56	19	30,5	2,4	0,60	8,99	
Maio	1 ^a	49	16	23,4	1,6	0,40	6,04	10,76
	2 ^a	45	15	19,9	1,3	0,31	4,72	

A partir dos resultados apresentados no Quadro 3, observou-se uma diferença de economia de energia elétrica decrescente do mês de maior evapotranspiração para o mês de menor evapotranspiração. Nos meses de dezembro e janeiro teve uma redução significativa no consumo de energia por apresentarem época de volume acentuado de chuva.

Com os dados apresentados no Quadro 3 possibilitou a simulação de consumo com e sem uso do Inversor de frequência, sendo assim obteve-se os resultados:

- i) Sem o uso do Inversor, para os meses em questão, e com os motores funcionando com a potência nominal foram de 198,72 kWh;
- ii) Com o uso do inversor, para os meses em questão, foram de 135,59 kWh.

Em comparação com os dados de consumo observou-se uma diferença de 63,13 kWh o que representa uma economia de 32% de energia elétrica, indicando a viabilidade no emprego desse equipamento.

CONCLUSÕES

O uso do inversor de frequência possibilita adequar o sistema de irrigação e economizar energia.

A utilização das informações da evapotranspiração de referência informou o consumo de água ideal para as culturas, gerando economia dos recursos hídricos.

As simulações apresentaram economia de energia elétrica de 32%, e confirmam que investir na racionalização de energia e de água no bombeamento para irrigação é possível de acontecer dentro do IFSULDEMINAS – Câmpus Inconfidentes.

REFERÊNCIAS BIBLIOGRÁFICAS

EMBRAPA. Cálculo da evapotranspiração de referência com base na temperatura do ar. **Comunicado técnico 61.** Bento Gonçalves, RS, dez/2005.

RIBEIRO, M. C., OLIVEIRA FILHO, D., SOARES, A. A., MARTINS, J. H., MANTOVANI, E. C. **Tarifa binômia para o custo de água pressurizada em perímetros irrigados.** Revista Engenharia Agrícola, Jaboticabal, v.30, n.4, p.578-586, jul./ago. 2010

SCARCELLI, R. O.; OLIVEIRA FILHO, D.; RIBEIRO, M. C.; LOPES, D. C. **Economia** de energia com uso de inversor de frequência em sistemas de bombeamento de água para perímetro irrigado. Revista Engenharia na Agricultura, v.17, p.462-472, 2009.

TURCO, J. E. P., RIZZATTI, G. S., PAVANI, L. C. Custo de energia elétrica em cultura do feijoeiro irrigado por pivô central, afetado pelo manejo da irrigação e sistemas de cultivo. Revista Brasileira de Engenharia Agrícola, v.29, p.311-320, 2009.